NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Technical Memorandum 33-305

Structural Analysis and Matrix
Interpretive System ( SAM/S)
User Report

Theodore E. Lang

GPO PRICE g !

CFSTI PRICE(S) $

Y FORM 602

(THRUY)

(ACCESSION NUM? /
Hard copy (H() SO0 : E (PﬁGEs) (cope)
| ~C | i i
MICfOﬁChB (M F) / I (NMEA'eR o TMX OR AD NUMBER) (CATEGORY)
i
653 July 65

JET PROPULSION LABORATORY
CALIFORNIA INSTITUTE OF TECHNOLOGY
PASADENA, CALIFORNIA

March 1, 1967



NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Technical Memorandum 33-305

Structural Analysis and Matrix
Interpretive System (SAMIS)
User Report

Theodore E. Lang

Approved by:

2. E Apen

M. E. Alper, Manager

Applied Mechanics Section

JET PROPULSION LABORATORY
CALIFORNIA INSTITUTE OF TECHNOLOGY

PASADENA, CALIFORNIA

March 1, 1967



Technical Memorandum 33-305

Copyright © 1967
Jet Propulsion Laboratory
California Institute of Technology

Prepared Under Contract No. NAS 7-100
National Aeronautics & Space Administration




H

JPL Technical Memorandum 33-305

CONTENTS
1.0 Introduction .
2.0 Shallow Spherical Shell, Static Response Prediction.
3.0 Shallow Spherical Shell, Dynamic Response Prediction .
4.0 The Line Element, Static and Dynamic Problems
5.0 Miscellaneous Topics .
References .

Appendix A. Transformation of Orthogonal Vectors .

Appendix B. Solution of Thermal Loading Problems.

Appendix C. Closed Form Solutions for the Static Loaded Shallow

Spherical Shell,

Appendix D. Input Data for Shallow Spherical Shell, Static L.oad Problem .

Appendix E, Input Data for Shallow Spher1ca1 Shell, Dynamic

Characteristics Problem .

TABLES

2-1. Gridpoint coordinate distances

2-2. Zero-valued gridpoint boundary conditions .

2-3. Transformed gridpoint boundary conditions

2-4, Pseudo instruction program for static response prediction .

2-5. Program printout of material table and element data

2-6. Printout of program core status

3-1. Gridpoint coordinates .

3-2. Boundary conditions for symmetric modes .

3-3. Boundary conditions for asymmetric modes

3-4. Listing of the pseudo instructions for the calculation of the mode shapes
and frequencies of the unsupported shell .

3-5. Printout of eigenvalues for the symmetric modes by the printout option

of ROOT .

47
98
104
121
122

126

129

135

147

13
16
17
27
29
52
56
56

66

75



JPL Technical Memorandum 33-305

CONTENTS (cont'd)

TABILES (cont'd)

3-6. Printout of eigenvalues for the symmetric modes of the INKS option .
3-7. Printout of eigenvalues for the symmetric modes

3-8, Natural frequencies of the shallow spherical shell.

5-1, Pseudo instructions for matrix partitioning

FIGURES

2.1. Shell dimensions and support .

2.2. Shell loading conditions .

2.3. Shell coordinates and force and displacement variables .
2.4 TFacet geometry and gridpoint numbering.

2.5. Element data for Element 1 of shell statics problem.

2. 6. Matrix identification card.

2.7. Matrix data card.

2.8. Listing of gridpoint displacements

2.9. Element 75 orientation and coordinates.

2.10. Listing of typical element stress resultants

2.11. Deformations, pressure loading

2.12, Membrane stress resultants pressure loading .

2.13. Bending moments, pressure loading .

2. 14, Deformations, temperature induced loading .

2.15. Membrane stress resultants, temperature induced loading .
2.16. Bending moments, temperature induced loading.

2.17. Grid refinement for stress calculations,

2.18. Plate geometry

iv

76
7
78

108

24
26
26
32
34
34
35
35
36
36
37
37
40

42



JPL Technical Memorandum 33-305

CONTENTS (cont'd)

FIGURES (cont'd)

2.

2

19.
. 20.
Sl

2.

.10,
11
.12,
.13,
.14,
.15,

.16,

Uniform grid representation of the shallow shell

Variation in displacement prediction with triangle geometry .
Nodal patterns of the symmetric flexural modes .

Nodal patterns of the asymmetric flexural modes
Displacement variables and coordinates

Subdivision of shell sector

Arrangement of facets,

Definition of matrix array.

Rigid body rotation, symmetric modes .

Rigid body rotation, asymmetric modes

Element data for Element 1 of shell dynamics problem .
Computed shape of the first symmetric mode

Out-of-plane displacements of the second and third symmetric modes

Computed shape of first asymmetric mode .

Out-of -plane displacements of the second and third asymmetric modes .

Refined triangular element idealization of shell sector

Refined out-of-plane symmetric modes.

Antenna and mount,

Three-dimensional frame structure

Sample element data for beam problem.

Coordinate and geometry of planar three-member frame structure .
Element input data for three-member structure .

Stiffened cylinder .

Two-member beam .

Solar panel,

45
46
48
48
50
54
55
58

60

63
73
80
81
82
83
84
85
96
99
100
101

103

115

118



JPL Technical Memorandum 33-305

CONTENTS (cont'd)
FIGURES (cont'd)
5.4, Definition of substitute node.
A-1., Sign convention and nomenclature.
C-1. Shell geometry and displacements

C-2. Shell temperature data

vi

118

123

130

130

- e m B o B S e O P D . e > e om-



JPL Technical Memorandum 33-305

ABSTRACT

This report describes the application and user aspects of
the Structural Analysis and Matrix Interpretive System (SAMIS)
Computer Program. It includes a detailed description of element
data preparation, matrix manipulations by use of "pseudo instruc-

tions, "'

and solution printout in solving the problem of a shallow
spherical shell under thermal and pressure loadings and the cal-
culation of the natural modes and frequencies of the shell. It
includes detailed ''pseudo instructions'' for matrix partitioning
and describes structural partitioning and matrix reduction

techniques.

The details of the associated computer program and the
theoretical basis for the program are contained in two companion
reports entitled, '"'Structural Analysis and Matrix Interpretive
System (SAMIS) Program Report,!" JPL Technical Memorandum
No. 33-307, and "Structural Analysis and Matrix Interpretive
System (SAMIS Program: Technical Report,'" JPL Technical
Memorandum No, 33-311,

- vii -
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1.0 INTRODUCTION

This document shows the generation and the interpretation of the input and
output data of several problems that were used to check out the Structural Analysis
and Matrix Interpretative System (SAMIS) computer program. The intent in describ-
ing these test problems is to demonstrate the applicability and versatility of the
SAMIS program and to provide sample problems that the user can refer to during

setup of his problems.

The SAMIS program is based upon the direct stiffness method. The program
may be used to compute the deflections, stress resultants, reaction forces and/or
dynamic characteristics of rod, beam, shell or composite beam-shell structures.
The structures may be loaded by applied external forces, gravity loads, pressure

loads or temperature-induced loads.

Consistent with the techniques of the direct stiffness method, the continuous
surfaces of shell structures are approximated by an array of flat triangular elements
called ''facets.' Adjoining rod or beam structures or shell-stiffening members are
represented by the line element or shear beam element. The triangular plate element
has three apexes which are designated 'gridpoints' or nodes. Correspondingly, the
line element has two nodes. This procedure of structural approximation is used
extensively in analysis of complex structures, with versatility in idealization limited

only by the availability of suitable elements.

The intent in development of the SAMIS program was to provide structurally

oriented analysis capability with extreme versatility in application and relative ease

in modification and improvement of the program. For this reason the SAMIS iﬁrbéram
was developed as a ''chain" sysfem in FORT.R;AN II, with each major function of matrix
generation and manipulation an individual link of the program. Detailed definition of
the system for the program is contained in the SAMIS Program Document (Ref. 1),
The SAMIS Technical Document (Ref. 2) contains detailed data and equations that

define the theoretical basis of the program.

The technical material in this report is presented in four sections. Sections
2.0 and 3.0 present the formulation of the input data and the interpretation of the

output data for the static and dynamic analysis of a shallow spherical shell. In Sec-

‘tion 4. 0, sample input data for the line element is presented and defined. Finally, in

Section 5.0, two special topics are discussed: (1) the concept of matrix partitioning
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which is required to apply SAMIS to structural analysis of large order systems and

(2) the treatment of gridpoint discontinuities (in displacement or slope) at joints.

The user of the SAMIS program is advised that in many problems system
capability can be extended and/or structural idealizations can be improved by
ingenuity and deduction. This has already been demonstrated by users of the program
at JPL and several NASA centers. By learning the functions and options of the
manipulative routines, the engineer can apply the program to a wide spectrum of
problem types and sizes. For example, through understanding of the subprogram
for matrix multiplication (MULT) the user can recode a matrix. Or by selective use
of certain subprograms of the SAMIS, a nonsymmetric matrix can be inverted by
Choleski Decomposition (CHOL), which in SAMIS is intended to operate only with
symmetric matrices. Adaptability of the program to handle these and other unusual
problem circumstances is considered one of the principal advantages of the program,
which can only be appreciated and applied after acquiring some knowledge of its

inner workings.

To aid the user in this endeavor this document presents discussion of some of
the test problems used to check out the SAMIS program. Note, however, that the
totality of problems presented here by no means tests every feature of the program,

which required the generation of many small problems to accomplish.

Gy o op D A o = O @ @ s O I a P & G o .
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2.0 SHALLOW SPHERICAL SHELL, STATIC RESPONSE PREDICTION

The problem considered in this section was formulated to test the static
solution capability of the SAMIS. The structure is a thin shallow spherical shell,
assumed material isotropic, that is restrained at its outer edge. Considered in
detail are the boundary conditions of the problem, definition of the input and output

data, and comparison of computed results with results from classical shell theory.

2.1 Description of This Problem

The shell configuration selected for this test problem is a thin, shallow,
spherical segment having a principal radius of 28.5 in., a thickness of 0. 075 in. ,
and a chord diameter of 21.2 in. (Fig. 2.1). The material is AL 2014-T6 with
Poisson's ratio 1/3, Young's modulus 10.5 x 106 psi, and coefficient of thermal

expansion 12,5 x 10_6 in./in./°F. The weight density of the material is 0. 101 lb/ina.

The shell is clamped along its outer edge and is subjected to two separate
loading states. One state is a uniform pressure of 50 psi applied to the concave
side of the shell. The other state is a uniform temperature rise of 125°F over the
zero stress temperature of the shell (70°F), plus a uniform linear gradient of 50°F
through the shell thickness. Due to the clamped edge constraint, the 125°F rise in
temperature as well as the temperature gradient induce stresses in the shell. The

two loading states are shown in Fig. 2.2.

For ease of computation the shell is assumed to be of uniform thickness and
material isotropic. Hence, because both loading states are symmetric with respect
to the principal axis of the shell, the deformation along any circumferential arc is
constant. For this reason only a sector of the total shell is needed for the idealiza-
tion. However, if only a sector is used, boundary conditions must be imposed not
only at the outer edge for the clamped constraint, but also along the radial edges of

the sector to account for the circumferential symmetry.

The shell sector selected is a 20 deg slice oriented with respect to an overall
Cartesian coordinate system as shown in Fig. 2.3. Fig. 2.3 also defines the force
and deflection variables required to represent the load and deformation state of a
triangle. The Cartesian coordinates X, Y, Z are the system coordinates to which

each gridpoint location is referenced.

Four requirements influenced the selection of the test problem outlined above.

First, it was necessary to verify that the computer-generated pressure and
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0.075 in.

10.6 in. —®»

: 28.5 in.
CLAMPED
EDGE

Fig. 2.1. Shell dimensions and support

T,=220°F

7,;,=195°F
P =50 psi

AMBIENT
BEFORE
HEATING
70°F (530°R)

Fig. 2.2. Shell loading conditions
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Shell coordinates and force and displacement variables




JPL Technical Memorandum 33-305

temperature loading vectors were correct. Second, it was necessary to determine
that the computed stresses and deflections compared favorably with corresponding
values obtained from shell theory. Third, the shell geometry was selected so that
mode shapes and frequencies could also be computed and compared with shell theory
values (Section 3.0). Fourth, the static test case was selected to test those sub-

routines that are meant to operate with matrices larger than core.

To assure the generation of a stiffness matrix which is larger than the
computer's core storage, the shell sector was idealized by the triangular array shown
in Fig. 2.4. In the vicinity of the clamped edge, the breakdown of triangular ele-
ments is greater than near the shell apex. The reason for this refinement is to more
accurately predict the stress resultants that vary rapidly near the boundary due to

the clamped edge condition.

These stresses reduce in value rapidly with distance from the edge. Ata
distance defined by (Rh)%, where R is the shell radius and h is the shell thickness,
the stresses due to edge effects are essentially zero. Beyond this distance the
stresses are predominantly membrane. In the present case, (Rh)—é— = 1.5 in., and it
was decided to obtain six values of stress within this distance; so the arrangement of
triangles shown in Fig. 2.4 was selected. In computing stresses for a triangular
element, the values obtained are referenced to the centroid of the triangle. Thus,
the stress computed for, say, triangles 88 and 89 will be different because the dis-

tance from the shell apex to the respective triangle centroids is different.

With respect to the coordinate system X, Y, Z, the coordinate distances to
each of the 70 gridpoints is given in Table 2-1. This information is needed in the

writeup of input data for the problem.

2.2 Boundary Conditions

For the shell all matrices are referenced to the system coordinates X, Y, Z;
hence the boundary conditions must be referenced to the same set. This poses no
complication except along the meridianal line defined by & = 20 deg. Along this edge

the boundary conditions referenced to polar coordinates £,0, ¢ (Fig. 2.4) are

as follows.
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Table 2-1. Gridpoint coordinate distances (in inches)
Node X y 2 Node x y z
1 0 0 28.5 32 7.8268 2.5935 27.281
2 1.3592 0 28.468 33 7. 7480 2.8201 27.281
3 1.2772 0.46487 28.468 34 8.7201 0 27.133
4 1.9254 0.33950 28.433 35 8.7054 0.50699 27.133
5 2.8554 0 28.357 36 8.6612 1.0123 27.133
6 2.6832 0.97660 28.357 37 8.5876 1.5142 27.133
7 4.3437 0 28.167 38 8.4850 2.0110 27.133
8 4.2777 0.75428 28.167 39 8.3538 2.5009 27.133
9 4,0817 1.4856 28.167 40 8.1942 2.9824 27.133
10 5.8200 0 27.900 41 9. 1924 0 26.977
11 5.7978 0.50727 27.900 42 9.1901 0.26736 26.977
12 5.7316 1.0106 27.900 43 9. 1590 0.80135 26.977
13 5.6217 1.5063 27.900 44 9.0969 1.3325 26.977
14 5.4690 1.9906 27.900 45 9.0041 1.8592 26.977
15 6.7981 0 27,677 46 8.8808 2.3796 26.977
16 6.7521 0.78919 27.677 47 8.7273 2.8919 26,977
17 6.6148 1.5678 27.677 48 8.6380 3.1440 26,977
18 6.3881 2.3251 27.677 49 9.6618 0 26.812
19 7.7600 0 27.423 50 9. 6455 0.56174 26.812
20 7.7469 0.45117 27.423 51 9.5965 1.1216 26.812
21 7.7075 0.90086 27.423 52 9.5150 1.6778 26.812
22 7.6421 1.3475 27.423 53 9,4013 2.2282 26.812
23 7.5508 1.7896 27.423 54 9.2559 2.7710 26.812
24 7.4340 2.2256 27.423 55 9. 0791 3.3045 26.812
25 7.2920 2.6541 27.423 56 10. 136 0 26.637
26 8.2453 0 27.281 57 10. 132 0.29475 26. 637
27 8.2418 0.23977 27.281 58 10. 097 0.88345 26. 637
28 8.2139 0.71866 27.281 59 10. 029 1.4690 26. 637
29 8.1582 1.1950 27.281 60 9. 9266 2.0497 26. 637
30 8.0750 1.6674 27.281 61 9.7907 2.6234 26.637
31 7.9644 2.1340 27.281 62 9. 6215 3.1882 26.637

onp G G G BN G W OB O N @ W @ ® W M & . -
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Table 2-1 (Cont'd)

Node be y z Node X y z
63 9,5247 3.4667 26.637 67 10.439 1.8407 26.456
64 10.600 0 26.456 68 10.314 2.4446 26,456
65 10. 582 0.61628 26,456 69 10,155 3.0401 26.456
66 10.528 1.2306 26.456 70 9. 9607 3.6254 26.456
u = 0
8
eé = 0 (not defined in classical shell theory)
i
b, = 0
i
(2.1)
NC = —Pi (not defined in classical shell theory)
i
N =0
¢i
M =0
5
where Pi is the fraction of the total pressure load lumped at gridpoint i. This pres-

sure load is lumped at the gridpoints automatically in the BILD link of SAMIS and

need not be considered as input, but is included here in order to specify completely
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the boundary conditions. The conditions of Eq. (2.1) transformed to the X, Y, Z

system of coordinates using the equations derived in Appendix A result in

uXi sin 20° - \.1Yi cos 20° = 0

GX. cos 20° + GY- sin 20° = O

1 1

F. cos 20° + F_, sin 20° = P, sin ¢,
Xy Yy L i | Right-hand side

component pressure

loads are generated

Pi cos ¢i internal to SAMIS

o
H

1
(@]
—_—

\S]

oo
~—

MX. sin 20° - MY. cos 20

1 1

where the stress resultants referenced to the X, Y, Z coordinate system are defined
in Ref. 1, Table 5-3. These boundary conditions apply to gridpoints 3, 6, 9, 14, 18,
25, 33, 40, 48, 55, 63 and 70. To impose these boundary conditions a coordinate

transformation is required, which is derived in this section.

Along the meridianal edge defined by 6 = 0 deg, the boundary conditions

referenced to the system Cartesian coordinates are:

uY' = 0
1
6. = 0
1
6 = 0
Z, (2.3)

10
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FXi = Pi sin d)i
FZ. = Pi cos ¢i
i
= !
MX 0 (2. 3) (Cont'd)

These conditions apply at gridpoints 2, 5, 7, 10, 15, 19, 26, 34, 41, 49, 56 and 64.

Remaining boundary and symmetry conditions must be imposed at the clamped

outer edge and the apex of the sector. At the clamped edge

uX. =0
1

uY' = 0
1

uZ. =0
1

6 =0
1

by 7 0
1

eZ = 0 (2.4)

which are imposed at gridpoints 64, 65, 66, 67, 68, 69 and 70.

11
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Finally, based upon symmetry conditions, the boundary conditions at gridpoint 1

(apex) are:

uX1 =0
qu =0
6X1 =0
GYl =0
GZI =0 (2.5)

1

The zero-valied boundary and symmetry conditions at the apex, side © 0 deg,

and clamped outer edge are summarized in Table 2-2.

The boundary conditions for gridpoints along the side of the sector at 6 = 20 deg
are defined by Eq. (2.2). To apply these it is necessary first to transform the

displacement variables from

( ] ° . °
uX. uX‘ cos 20° + uY. sin 20 W
1 1 1
uY. Uy sin 20° + uY‘ cos 20
1 1 1
Yy Yy
1 1 L
L to ﬁ
eX. GX. cos ZQ + GY' sin 20
1 1 1
0y —eX. sin 20° + eY' cos 20
1 1 1
GZ 67
i L "
/ /
12
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Table 2-2. Zero-valued gridpoint boundary conditions

Node. No. uX. uY. uz eY.
1 1 1 1 1
] 0 0 u, 0

]
2 u 0 u 0
X, Z, Y,
5 0 u 6
X Zg Yy
7 0 u 6
%{7 Z4 Y,
10 0 u 6
X0 Z10 Yo
15 0 u 6
K15 215 Y5
19 0 u 6
X 219 Yig
26 0 u 3]
ooy Z26 Y06
34 0 u 6
"X, Z 34 Y4
41 0 u 0
Ky Z 4 Y
49 u 0 u 6
X 49 Z 49 Y49
56 0 u 0
Koy Zs4 Yoo
64 0 0 0 0
65 0 0 0 0
66 0 0 0 0
67 0 0 0 0
68 0 0 0 0
69 0 0 0 0
70 0 0 0 0
13
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and similarly the force variables from

i&_toﬁ

’

\

¥

X.

-F

1

X,

M

1

X,

-M

1

X.

1

\
cos 20° + FY. sin 20°
i
sin 20° + FY. cos 20°
1
¥
Z .
1 -
cos 20° + I\/IY sin 20°
i
sin 20° + MYi cos 20°
M
Zi )

A single transformation matrix will accomplish this task. Stated another way, what

is wanted is a matrix that does the following:

()

U 11
1

Yy, a1
1

4 vz & a3

1 —_—

Ox. 41
1

O¢. @51
1

0. 261

\. 1/ L

o

12 13

14

15

sin 20)

1

cos 20°

1

/
2 o
a16 uX cos 20° + uY
1
-U.Xi sin 20° + uY‘
u
Z.

< 1
X.
1

6%
1

SV
\ 1

1

i

5] cos 20° + GY sin 20°

sin 20° + GY cos 20°

/

(2.6)

The a,j can be found by writing the individual equations of the above matrix equation
i

and solving the coefficient equations of the variables.

The result is:

cos 20°

-sin 20°

sin 20°

cos 20°

= 1.0 a,, = cos 20°
= 1.0 aug = -sin 20°
ag, = sin 20°
agg = COS 20°
14
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Therefore, the transformation matrix is

S

0.940 -0.342 0 0 0 0
0.342  0.940 0 0 0 0
- i} 0 0 1.0 0 0 0
[ U] 0 0 0 0.940 -0.342 0
0 0 0 0.342  0.940 0

| 0 0 0 0 0 1.0 | (2.7)

which must be applied to the variables of gridpoints 3, 6, 9, 14, 18, 25, 33, 40, 48,
55 and 63.

This redefines the variables, so that the boundary conditions at the above

gridpoints become those shown in Table 2-3.

2.3 Procedure for the Calculation of Deflections, Stresses, and Reaction Forces

The physical and geometrical data that pertains to idealization of the structure
having been defined, this data is assembled in a format required by the SAMIS

program.

Additional input is required to direct the computer in performing operations of
the structural analysis. This direction is provided by a set of ""pseudo instructions, "
or command instructions, that call for the subprograms of the SAMIS program needed
to manipulate the data in the required sequence to solve the problem. The set needed
for the statics problem is listed in Table 2-4. The manipulation that each instruc-
tion performs is explained below, each instruction being considered in the order that

it appears in Table 2-4,

Instructions 1 through 3 represent the generation phase of this set of pseudo

instructions. Explicit interpretation of these instructions is:

1.0 BILD: Generate the element stiffness matrices (KARO0O1
through KAR108), element stress matrices (SSR001
through SSR108), and element temperature and pres-
sure loading vectors (TLC001 through TLC108) for
the 108 elements for which input data has been provided.
Each stiffness matrix is stored on tape 9 (locations
09001 through 09108), each stress matrix on tape 10
(locations 10001 through 10108), and each loading
vector on tape 11 (locations 11001 through 11108).

15
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Note that the symbols used in defining the alphanumeric
title of each matrix are arbitrary. In the listing in
Table 2-4, the last letter indicates the listing of the
matrix, where R = row listed and C = column listed.
This convention is for user convenience and in no way
controls the actual listing of the matrix.

2.0 ADDS: Add the 108 element stiffness matrices. Title the
summed matrix KKR00Ol and store it on tape 13,
location 1.

3.0 ADDS: Add the 108 loading matrices. Title the summed matrix
TSCO001 and store it on tape 13, location 2.

Instructions 4 through 12 effect transformation of the generalized displacements and

impose force and displacement boundary conditions.

4.0 READ: Transfer the variable transformation matrix VT C001
from the data input tape to tape 09, location 001.

5.0 FLIP: Transpose the matrix VI C001l. Matrix VT C001 is
column-listed so the transpose will be row-listed. The
transposed matrix VFRO0O1 is stored on tape 11,

location 001.

6.0 MULT
7.0 MULT
8.0 COLS L Transform the loading vector and stiffness matrix in a
9.0 MULT manner consistent with the following mathematical
10.0 ROWS interpretation:
11.0 COLS )

The outputs of the generation phase [K] and {Pi" are
related by:

[x] {5;} = {P;}
where

[kkRro001]

—
>~
—
1

(Instructions 2 and 3)
[Tscoo1]

"
I
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The function of the VICO00l matrix is to impose the
constraint conditions along the outer edge of the shell
and along the edges of the shell sector defined by

6 = 0 deg and 6 = 20 deg. The transformation is shown

to be of the form (see Eq. 2.6):
{o:} = [T] {5;}
where 61 are the displacements of the unconstrained

system, gi are those of the constrained system, and

[T] is the transformation matrix. Substituting, we

obtain
K (7] 5.} = {»y)
then
(" <[] 5,4 = [T ypy)

(K] o5} = {7y

where this equation represents the transposed force-
displacement equation. In the pseudo instruction

program:

[KKRO001]

(]

From Instructions 10 and 11

n

[TsCo01]

{Pi}

The matrix triple product [T]T [K] [T] = [R] assures
that if [K] is symmetric [I_{] will also be symmetric.
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12.0 READ: Transfer the matrix WAROOL to core from the data
input tape.
13.0 WASH: Pre- and post-multiply the stiffncss matrix KKROO1 by

the matrix WARO0O1l, which is a diagonal matrix.
Mathematically, this equation is identical to the trans-
formation already described in that a matrix triple
product is formed. The only difference is that the
WASH matrix (WAROOL) must be diagonal, hence rows
and columns of KKR00O1 can only be scaled or deleted.

This opecration imposes the boundary conditions defined
in Table 2-3, and results in reduction of order of the
stiffness matrix. The output matrix KWRO0O01 is the
compacted stiffness matrix. It is row-listed and is

stored on tape 11, location 0OI.

The transformation performed by instructions 6.0 through 9.0 partly resulted
in imposition of certain zero-valued displacement conditions on the structure. It
should be noted that this same operation can be performed by inserting appropriate
gridpoint continuity numbers in the element input data. In many problems, if this is
done, no other transformation is required. However, this is not the case with this
statics problem because of the skewed direction of the one meridianal edge with

respect to the coordinate axes X, Y, 7.

Instructions 14 through 17 direct the computation of the structural displacements

due to loading conditions defined by matrix TSCOOI.

14.0 CHOL: Solve through matrix decomposition for the displace-
ments. Mathematically, the following operation is
performed:

Starting with [K*] {61} = {_151} , where [K*]
is post-washed and {61§ are the remaining

nonzero displacements, this instruction yields

tit = 17 4By

The quantity {f’i% is represented above as a column vector. Actually, it con-
sists of two columns, one column of equivalent gridpoint forces due to pressure

loading (designated column 04), and one column of fixed-node thermal forces
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designated column 05). The quantity {yﬂis also a two-column array. The user of

the program should be alert to the fact that, when CHOL is used, the loading vector

or B field entry can actually be up to 500 columns of different loading conditions.

15,0 ROWS:
16.0 MULT:

17.0 COLS:

18. 0 INKS:

Row-list VTCO001 and leave the output VTRO0O0O1 in core.
Multiply matrices VTR001 and DICO0O01 together to
obtain DAC001, which is stored on tape 09, location 004.
The displacements DACO00! are transformed values

defined by
{o:} = [THs}}

However, here the { 61} do not include those
displacements that were removed by instruction 13.0
Column-list DACO001. Title the resulting matrix DIC001
and store it on tape 12, location 001. Note that DACO001
is already column-listed. (The purpose of this instruc-
tion is to retitle the displacement vector and relocate it
on tape.) This is an extra instruction inserted to include
the problem type in which a variable transformation is
not required, For that case, instructions 4 through 10
and 15 through 17 would be omitted. However, as this
option stands, it is assumed that zero boundary condi-
tions are imposed by a WASH operation rather than by
an insertion in the element data.

Transfer the displacement vectors DIC001 to the data
printout tape from tape 12, location 001. The matrix is
also identified by a single title card as specified in the
E field. This data will be part of the final printout

from the computer.

Instructions 19 and 20 direct the computation of the reaction forces at the

restrained gridpoints.

19.0 MULT:

Multiply the structure stiffness matrix KKR001 by the
nodal displacements DIC001 to obtain the nodal reaction

forces RFC001. The reaction forces along the
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meridianal edge of the shell defined by 6 = 20 deg are
referenced to this edge rather than the X, Y, Z coor-
dinate system. Specific interpretation of these forces
is contained in the definition of the transformation
matrix (see Eq. 2.6).

20.0 INKS: Transfer the reaction force matrix RFCO001 to the data
printout tape from tape 11, location 00l. This matrix
will be headed by one title card as specified in the E
field.

Note: If reaction forces are not needed, instructions 19 and 20 should be omitted.

21.0 READ: Transfer the matrix ATCO001 to core from the data
input tape. This matrix is used in the calculation of
the thermal stresses, as outlined in Appendix B.

22.0 ADDS: Add the AT CO001 matrix to the displacement vectors
DIC001. Designate the sum DT CO001 and leave it in
core.

23.0 MULT: Serial multiply each stress matrix starting with SSR001
with the displacement vectors to obtain values for the
stresses for the two loading conditions. Each stress
matrix is stored on tape 11 in consecutive order, the
last matrix being SAC108.

24.0 INKS: Transfer the 108 stress matrices to the data printout
tape in consecutive order. One title card is supplied to
label each of these matrices.

25.0 HALT: Halt operation on this program.

2.4 Description of Input Data

The input data for any problem must be listed sequentially as it is used in the
pseudo instruction program. If the pseudo instruction program begins with a BILD
instruction, then the input data following the list of pseudo instructions must start
with a material table followed by element data. If the first pseudo instruction is a
READ instruction, then the input data following the pseudo instructions must begin
with the matrices being read into the program in sequential order. The only other
method of starting the program is with an operation pseudo instruction in which data
on specific tapes must be supplied. This option is generally used in program recov-

ery from a noncorrective error stop of a previous run.
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In the present case the pseudo instruction program is headed by a generation

phase (BILD); thus, the order of listing of the pseudo instructions and other input

data is the following:

a.
b.

(]

d.

€.

List of pseudo instructions
Material tables

Zero card

List of element data

Matrix data and title cards

The complete listing of the element and matrix data is given in Appendix D. Comments

regarding each of these as applied to the present problem are given below:

a.

Pseudo instructions: The listing of the pseudo instructions is given
in Table 2-4. The format for the pseudo instructions is defined in
the description of the MAKER subprogram in Ref. 1.

Material table: The format of the material table is given in Ref. 1,
Table 7-1. For the shell the material is 2014-T6 aluminum alloy,
which is assumed isotropic. This material is not particularly
sensitive to temperature changes in the range considered in this
problem. Therefore, the material is defined for room temperature
(70°F or 530°R) and is assumed to remain constant with temperature
change. Alternately, a material table for each of several tempera-
tures could be provided, in which case linearly interpolated or
extrapolated material coefficients would be computed by the program
to match any specified temperature. In this problem, one material
table is used.

Zero card: This card flags the end of the material data and the
start of the element data.

Element data: The element data format and identification is
described in detail in Ref. 1, Tables 7-5 and 7-6. Therefore,

only the information for a typical element of this problem will be
identified. The three cards of input data for the element in Fig. 2. 4
having gridpoints 1, 2, 3 are shown in Fig. 2.5. The numbers in
each data field are identified as parameters of the shell statics

problem,
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Matrix data and identification cards: The first matrix that is
required by the pseudo instruction program is the variable trans-
formation matrix VTC00l. The transformationis given by Eq. (2.7),
and must be imposed at all gridpoints along the 20 deg meridianal
edge of the shell. All other gridpoint variables must be retained,
so diagonal unit values must be supplied to preserve these rows and
columns during the multiplication sequence. Furthermore, since
the matrix is listed in coded format, only nonzero element values

need be listed.

The identification card for each matrix has a format defined in
Ref. 1 in the READ subprogram description. For the matrix
VTCOO01 the identification card is shown in Fig. 2. 6.

The second card of the VT C001 listing is the first data card, the
format of which is also detailed in the READ description in Ref. 1.
The matrix is in coded format and is column-listed. Information
on the first data card applies to gridpoint 1 (see Fig. 2.7). The
component numbers depend upon the type of element used, so are
defined in each element write-up. Since the '"facet'' element is

used here, the component definition is given in Table 5-1 of Ref. 1.

The second matrix that is required is the row-column elimination
matrix WAROOLl. The variables that need to be eliminated are
defined in Tables 2-2 and 2-3. This matrix is row-listed and
requires 38 cards to list. In the pseudo instruction the E field is
blank, so the first option of WASH is used which retains rows and

columns not listed in WARO0O01,

The next input is the title card called for by the 18th pseudo
instruction. The matrix printed out by this INKS instruction is

given the title "GRIDPOINT DISPLACEMENTS, "

The third matrix that is input is ATCO001 by pseudo instruction 21.
This matrix is used in computing the stresses due to thermal

effects. The function of this matrix is described in Appendix B.

The last input is the title card "ELEMENT STRESSES," which is
used in pseudo instruction 24 (INKS).
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No. OF CARDS COLUMN
OF MATRIX LISTED
LISTING |——e ALL OTHER
COLUMNS BLANK
R/TCOO\I] ’1561 | I 1 i 1 I] Q - ) l 1 ll \ l
MATRIX R—-N('J. OF ROWS AND
TITLE COLUMNS (USED WITH
PRECODED MATRICES) CODED
Figure 2. 6. Matrix identification card
COLUMN CODE ROW CODE COLUMN CODE
GRIDPOINT | GRIDPOINT | GRIDPOINT |

COMPONENT I7

COMPONENT 2 7

COMPONENT 3 7

[ 1] arl

o [ i

I12| J.0 l | |3|l I3L l,.0 ?:]

\ ROW CODE

GRIDPOINT. |
COMPONENT |

Figure 2.7,

\—ROW CODE \—VALUE

GRIDPOINT |
COMPONENT 3

COLUMN CODE
GRIDPOINT |
COMPONENT 2

Matrix data card
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2.5 Program Printout of Input Data and Program Status Statements

Upon command by insertion of a negative sign in the E field of BILD, the
program prints out the material tables and element data as interpreted from the
program input data. The material table printout for 2014-T6 aluminum alloy and the
first and second sets of element input data for the shell statics problem are shown in
Table 2-5. Comparison of these data with the prepared input data listed in Appendix D

shows exact numerical agreement and similar formats.

It should be noted that the material identification is 2014-T6 in the material
table (Table 2-5), but in the element data (Fig. 2.5) the identity is 20. That is,
material identification is by the first and second characters of the six-character word
appearing in the material table. Thus, if several entries of the same material are
listed in the material table (say, for specification of different properties at different
temperatures), the identification must be distinct for each entry. Numeric or alpha-

betic characters may be used to vary the identification.

The structural element data is printed out by the program by user option.
However, a second set of statements that define core status before and after execu-
tion of each pseudo instruction is automatically recorded and printed out by the pro-
gram., A sample of this printout from the JPL computer is presented in Table 2-6
for pseudo instructions 1 and 2 in Table 2-4. Observing the printout in Table 2-6, it
should be noted that a time reference is given at the start and finish of each pseudo
instruction. Also, the core status of the matrix data regions corresponding to the
A, B, and C fields of each pseudo instruction is provided. For example, chain link
16 (BILD) was transferred from the program library tape to core at 6 hr, 00 min,

40 sec. The status of the final stiffness (KAR108), stress (SSR108), and loading
(TLC108) matrices is given after the statement "CORE STATUS AT COMPLETION,"
Considering the stiffness matrix KAR108, it is 5 blocks long (120 words per block),

is row-listed (-1), is coded (0), and, besides being in core in ID location 1, is

stored on tape 9 entry 108.

The listing of program status was originally generated to aid in checkout of the
program. It has proven to be very useful in locating user as well as program errors,
and for this reason is retained as part of the standard output of the SAMIS. The user
is cautioned that in some cases one or more of the matrices are stored on scratch
tape as the calculation is performed. In the event this happens, the printout of core

status may not include all matrices involved in the calculation.
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2.6 Interpretation of Output Data

Transfer of data to the printout tape of the program as the pseudo instructions

are executed can be accomplished by the following options:

a.

If the number appearing in the E field of BILD is negative, then the
material tables and element input data are written on the output
tape.

If the number appearing in the E field of READ is negative, then all
card data read will also be transferred to the program data-output
tape.

If the number in the E field of ROOT is negative, then that number
of eigenvalues will be transferred to the program output tape.

Corresponding eigenvectors must be handled by a separate instruc-

\ (INKS).

tio

If a number is placed in the E field of the HALT instruction, the
program version of the pseudo instruction program is written on
the printout tape.

Options a through d above apply to transfer of particular data. To
transfer general computed data the INKS instruction is used. Most
output data such as displacements, stresses, forces, etc., are

written on the printout tape by INKS instructions.

Analogous to the ordering of input data as it is required in the pseudo instruc-

tion program, the printout data will be in the order that it is written on the printout

tape. Labelling of the output is user-controlled by the number and content of title

cards supplied to the program (see INKS subprogram description in Ref. 1).

In the present problem the output consists of the gridpoint displacements

(DIC001), reaction forces (RFC001), and member stresses (SAC001). Complete

listing of these data will not be included in this report, but samples of each will be

identified.

Gridpoint displacements: Two sets of deflections were computed in
this problem. First, the deflections due to the pressure loading
identified by a column number 04%, second, the deflections due to

the thermal environment identified by a column number 05%., Part

*See Table 5-2 of Ref. 1.
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of the displacement listing obtained from the computer is shown in
Fig. 2.8 with pertinent identification information.

Reaction forces: The reaction forces consist of two sets and have the
same type of listing as the displacements. Interpretation of compo-
nent numbers is analogous to that for displacements. Correspon-

dence is indicated in paragraph 2.2 and may be summarized as

follows:
U — FX ex — MX
h=F, o =M
Y= Fz 6, =’Mz

Element stresses: The interpretation of the stress resultants is
more complicated than of displacements. The stress components
are given in Table 5-3 of Ref. 1 in terms of numerical subscripts.
The relation between these subscripts and the local x and y directions
depends upon the definition of the local coordinate system assigned to
each element. Since all input for this problem was in the overall
coordinate system, the local coordinate system was generated
internally by the program for each element. In this case the local
x-y directions are defined by the first and second gridpoint numbers
listed in the input data. Observing element 75 in Fig. 2.4 and check-
ing its element data in Appendix D, it is known that the local x-y
plane is that shown in Fig. 2.9;

Note: The local x coordinate lies along the line joining the first
two gridpoints introduced in the element data, unless the
local coordinates axes are defined explicitly by the

analyst.

Therefore, consistent with the definition of the force variables as shown in

Fig. 2.3, we can make the following equivalences:

N, = N My, = oM

N2 = Ny Maz = -M,

N, o= N M, = M
31
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MATRIX IDENTIFICATION MATRIX TITLE
pIC 1 GRI1IDPOINI DI >PLACEMENTS PAGE 1
ROw coL ELEMENT ROW coL ELEMENT ROW coL ELEMENT ROW coL ELEMENT
13 04 0+2543E-01 21 Q4 G.8230E-03 23 04 0.2131E-01 25 04 0.6026E-02
31 04 0.7739€-03 32 o4 0.2816E-03 33 04 0.2131€-01 34 04 -0.2051E-02
35 04 0.56385-02 41 04 0.1056€~02 be 04 0.1926E-03 43 04 0.1913g-01
44 04 =-0.1531€-03 45 04 0.1443E-02 46 04 0.4358€E-03 51 04 0.1662E~02
53 04 G.1945€-01 55 04 -0.2143E-02 61 04 0.1563E-02 62 04 0.5687E-03

VALUE OF DISPLACEMENT

LOADING CONDITION 04 (PRESSURE)
DISPLACEMENT COMPONENT 3 (Uz)
DISPLACEMENT AT GRIDPOINT &

DISPLACEMENT AT GRIDPOINT 6l
DISPLACEMENT COMPONENT 4 (6x)
LOADING CONDITION 05 (THERMAL)
VALUE OF DISPLACEMENT

614 05 -0.6272E-02 615 05 Ue2359E-01 616 05 G.1024E-03 621 05 0.1260E-02
622 (3] 0.4181E-03 623 05 0.56049E-02 624 05 -0.8797E~02 625 05 0.2284E-01
626 05 ~0.3210E-02 631 05 U.12568E-02 632 05 0.4612E~03 633 05 0.6051E~02
634 05 -0.8321E-02 635 05 0.2287E-01

THIS COMPLETES PRINTOUT OF MATRIX 12001 DIC 1.

Fig. 2.8. Listing of gridpoint displacements
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This information is sufficient to define the component numbers in Fig, 2,10
and interpret the element stress resultants. It should be noted that all elements
oriented as element 75 (circumferential edge farthest from shell origin) have been
defined in the element data to have the same relative local coordinates as element 75.
Three other local coordinate types occur in this problem: those for elements @

and @ and a type typical of element @

2,7 Summary and Discussion of Computed Results

The displacements and stress resultants due to the pressure loading and
temperature-induced loads were computed by three methods. Solution of the govern-
ing differential equations in closed form based upon shallow shell theory provided one
set of data (see Appendix C). Solution of the differential equations by a finite differ-
ence technique provided a second set of data (for details of the method see Ref, 4)¥,
Third, solutions are obtained by use of the SAMIS, which is a finite element

solution,

Since the structure geometry and boundary conditions are axisymmetric, data
need only be compared along a meridian of the shell., Furthermore, since variables
change rapidly only near the clamped edge of the shell, plotted results are expanded

to show this region in greater detail.

Results for the two loading cases are shown in Figs. 2,11 through 2.16, For
the pressurized shell, the maximum values of displacements, slopes, and stress
resultants are comparable within good engineering accuracy ( < +5%). Similar
results for the temperature-induced loading case exhibit greater scatter in the mem-
brane stresses (Fig, 2.15) because they are obtained from the differences of large
numbers (Appendix B), In addition, the computed bending moments are systemat-
ically shifted from the finite difference values for reasons that have not been
determined (Fig. 2,16).

As indicated in Fig, 2,10, the stress resultants are referenced only to the
triangle, not to any particular location within the triangle. However, it has been
shown that the optimum placement of the stress reference point is at the centroid of
each triangle (Ref, 5). This procedure was used in locating the finite element values
in Figs, 2,12, 2,13, 2,15, and 2,16,

*In computing results by the finite difference approach, constant increments in arc
length of 0,01 in, were used,
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X, ¥, Z-OVERALL COORDINATES
x, y,2—-LOCAL COORDINATES

g i @:%\_
6& SECOND GRIDPOINT LISTED

FIRST GRIDPOINT LISTED

Fig. 2.9 Element 75 orientation and coordinates

MATRIX IDENTIFICATION MATRIX TITLE

NUMBER (ELEMENT 75)

SAL 75 ELEMENT STRESSES
ROW coL ELEMENT ROW coL ELEMENT ROW
751 04 0.3963E 03 752 04 0.7054E 03 753
155 04 0.1627€ 01 156 04 =—0.6199E-02 151
753 05 =-0.6624E 00 754 05 =0.2093E 01 155

coL

04

05

05

THIS COMPLETES PRINTOUT OF MATRIX

VALUE OF STRESS RESULTANT

LOADING CONDITION 05 (THERMAL)

STRESS COMPONENT 3 (Nj3)

STRESS RESULTANT FOR ELEMENT 75

ELEMENT
-0.2813E-00
0.2921E 04

-0.1549E-00

11075 SAC 75.

ROW
754
752

756

Fig, 2.10. Listing of typical element stress resultants
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Two conditions contribute to the variation in stress values observed in
Figs. 2.13 and 2,16, First, a general characteristic in deflection analysis of plates
and shells is that stresses are computed with less accuracy than are displacements,
The reason is that derivatives (or differences) of the displacements must be computed
in determining stresses, and this process inherently results in decreased accuracy.
Second, with specific reference to the finite element method, only average stresses
are computed for each element, These stresses are referenced to the centroid of
each triangle. They may be either less or greater than the exact values at these
locations. Thus, it is to be expected that in a deflection analysis the deflections are
computed with greatest accuracy and the transverse shear resultants with least

accuracy. Values for the slopes and moment resultants fall within these extremes.

With regard to the calculation of transverse shears, in attempting to extract
one higher derivative than that for moments, inadequate accuracy was observed. The
approach has been to determine shear stresses only from information within each
triangle, in the same manner as that in which moments are computed, This modu-
larizing approach, although successful for the calculation of the moment resultant,
has not proven accurate in the calculation of transverse shears. For this reason the

routine for calculating shear stresses has been omitted from the program.

Normally, transverse shear effects are small for thin shells, and calculation
of values is not required, However, in sandwich construction this may not be true,
Presently, accurate values of the shear stresses can be computed by a least squares
technique. However, this requires the use of data from a number of adjacent
elements. Should it be necessary to establish values for the shears, the least
squares scheme is recommended (Ref. 5). It is planned that the calculation of trans-

verse shears by the least squares technique will be programmed for the SAMIS.

2.8 Improved Stress Prediction

Degradation in the accuracy of stresses compared to displacements may lead
to results in which deflections are sufficiently accurate but stresses are not,
Several options are available to the analyst if this situation arises. The most
straightforward approach is to refine the element grid array and rerun the problem.,
If a total of three grid arrays is used, then itis possible to extrapolate values of
stresses by plotting or fitting an analytic curve to the data points. However, this

approach is not entirely attractive in most problems because of the amount of work
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involved in defining and preparing input for three grid arrays. Also, in order for
this method to apply, the grid refinement should involve further subdivision of the
element pattern of the coarser grid, rather than a redefinition of a new pattern with
just a few additional elements, Thus, unless the coarse grid is planned carefully,
one grid refinement can involve a large increase in the number of elements in order

to maintain a more or less uniform triangular grid size. In some problems there is

no alternative to this approach.

In regions where the stresses are not sufficiently accurate, if the gridpoint
displacements are plotted and curvature changes are observed between gridpoints,
then refinement of the stress prediction is possible without complete reidealization
of the entire structure. In this approach, the local region of the structure where
stresses vary significantly is reidealized with a finer grid, For example, in the
present problem assume that the stresses near the outer clamped edge of the shell
are not sufficiently accurate., To improve the stress prediction, a region such as
that defined by gridpoints 19, 20, 64, and 65 can be treated separately, This
region is further subdivided as depicted by the dashed lines defined by Fig. 2.17

From the results obtained using the coarser grid array, deflections are known
at the circled gridpoints., These results are plotted, and interpolated deflections are
assigned to all other gridpoints, Element data is then prepared for the new array of
triangles for use in the program to generate the element stress matrices [Si] . The
original and interpolated deflections are column-listed {6 } , and the matrix product
[Si] {6 }is programmed to compute new values for the stresses, It should be noted
that if the deflections vary linearily, no improvement in stresses will be obtained by

use of this method.

This method is very simple to apply to improve the prediction of stresses.
Note, however, that improvement of the stresses for the shell statics problem should
not be expected to be large because the displacements appear to be sufficiently

accurate,

A second approach to improving the stress prediction is to subdivide a local
region as shown in Fig, 2.17. Then only the displacements at the new gridpoints on
the boundary are interpolated from previous results by linear or higher-order
interpolation procedures, This data defines a set of displacement boundary conditions
for the modified local structures, The problem is then rerun with appropriate
external loads applied at the interior gridpoints to obtain a new displacement vector

for the local region. From this data, element stresses are recomputed to complete
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the procedure, This method requires more setup and computer running time than
the previous method, but should yield greater improvement in the stress prediction,
The use of either method is recommended as a first step in improving the stress

prediction because of the ease of setting up the problem, compared to alternate

methods,

2.9 Representation of Sandwich Structure

The most general stress-strain law that can be used with the triangular shell

element in the SAMIS program is one having 13 independent elastic constants. The

general expression is:

[‘ -3
T xx Dll DlZ D13 D14 0 0 € xx
Uyy D22 D23 D24 0 0 Sy'y
72z D33 D34 0 0 ‘2z
= (2.8)
ﬁo > D 0 0 -< € >
Xy 44 Xy
U xz S¥M Dgs  Dgy €xz

For some configurations of sandwich structure these elastic constants can be
modified to account for the different cross-sectional geometry, The particular
idealization is from a sandwich structure in which the two outer skins are equal in

thickness to an equivalent homogenous plate of thickness h, The two structures are

shown in Fig, 2,18,

The procedure is to determine the properties of the equivalent plate such that
the axial, bending and shear rigidities of the two systems are equal. Consider first

the axial and bending rigidities of the two structures,

(S) _ (P) .
2t Dij = h Dij (Axial)
2 3
x (S) _ h” (P) .
Zt(z) Dij =17 Dij (Bending)
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(P)

Solving for Dij and h, we obtain

h = N3r
pP) - 2t pS) a/D§.S)
1 Vr Y )

The modified thickness h is the value that should appear in the element input
data. The elastic constants that relate to axial and bending stresses in Eq. (8)

should be scaled by the factor a.

The final assumption made in idealization of the sandwich structure is that the
core carries all of the transverse shear stresses. This assumption is generally
valid if the thickness of the outer skins is small compared to the thickness of the core
and/or the core is very flexible in bending. With this assumption, equating the shear

rigidities, we obtain

but h = \@r, SO

pP) = L p® - gpl®
ij 3 ij ij
D,(/S) 0,(;)

L —L

T ”//////////l

77777777 T « 10 ,_T

|—— 1.0 —m

S — P

a. SANDWICH STRUCTURE b. EQUIVALENT PLATE

Fig. 2.18., Plate geometry
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plished by interpolation and extrapolation

case the form of the constitutive equations
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must be generated for each thickness of sandwich structure.

scaling factor for the remaining basic material tables.

This equation is a good approximation if exy
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Therefore, the equivalent stress-strain law that can be used, if the sandwich structure

satisfies the assumption that has been made, is:

@D, 0 0 ] (€ )

aD24 0 0 cyy

QD34 0 0 €zz
aD44 0 0 < ny> (2.9)

ﬁD55 FSDS() ‘xz

BDééd ‘yz)

his modeling, a different material table

If the structure happens

to be uniform there is no problem; however, for nonuniform sandwich structure a
number of material tables must be generated. This job is eased if shear deformation
is negligibly small, in which case the values of the coefficient preceded by B in

Hence, a may be extracted from Eq. (2.9) and used as a

This scaling may be accom-
simulating a as temperature. For this

becomes

D, O 0 |/ eny
D24 0 0 Cyy
Pyg O 0 ‘22
D44 0 0 “xy
D55 D56 ‘xz
Pes |\ ez

and Eyz are negligibly small compared
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2.10 Solution Variation with Triangle Geometry

As discussed in Ref, 2 the equilateral triangle will provide the most accurate
representation of plate-type structure. To appraise this concept, the shallow
spherical shell was subdivided into a uniform grid of triangles as shown in Fig. 2.19.
Successive solutions were obtained for different values of 8, notably 6 = 20, 60, 70
and 90 deg. For the case 6 = 60 deg, all triangles were approximately equilateral,
The shell curvature perturbing the triangle shapes slightly from equilateral.
Transverse displacements at selected gridpoints on the shell, notably gridpoints @,
, and are plotted vs the sector angle 6 in Fig. 2,20, These results
indicate that the most accurate prediction of displacements is for a sector angle of
approximately 60 deg. These results are by no means conclusive, because the
effects of curvature, shear deflection, and gridpoint load lumping may influence the
results. However, we can conclude from these results that use of triangles that
have a height-to-base ratio of order unityappears to be better suited for structure
idealization than triangles with very large or very small aspect ratios. This con-
dition is used in Section III of this report in idealization of the shallow shell for

determination of mode shapes and frequencies.
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Fig., 2.19., Uniform grid representation
of the shallow shell
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Fig., 2.20, Variation in displacement
prediction with triangle geometry
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3.0 SHALLOW SPHERICAL SHELL, DYNAMIC RESONANCE PREDICTION

The problem considered in this section is computation of the low-frequency
flexural mode shapes of a free shallow spherical shell, Described are the shell
geometry and constraint conditions, the input and output data formats, the compari-
son of computed results with other solutions, and other related dynamics problem

topics pertinent to the use of SAMIS,

3.1 Description of Shell

The shell configuration used in the static analyses will be used also to demon-
strate the method of computing the low-frequency mode shapes and frequencies using
the SAMIS computer program. One change is that the outer edge of the shell will be
assumed free rather than clamped as in the static analysis. Overall geometry,

material properties, and weight distribution are the same as defined in Section 2. 0.

3.2 Boundary Conditions for the Flexural Modes

A shallow spherical shell has low-frequency mode shapes similar to those of a
plate. The modal patterns for the lower symmetric flexural modes are shown in
Fig. 3.1. The plus and minus signs indicate relative direction of the transverse
displacement. The nodal patterns of the lower asymmetric flexural modes are shown
in Fig, 3.2. The symmetry of the nodes about the centerline of the shell determines

whether the mode shapes are classified symmetric or asymmetric,

Observing the characteristics of the mode shapes in Figs. 3.1 and 3,2, it is
noted that a sector of 90-deg arc can be selected for the symmetric modes to have
nodal lines at each of its radial boundaries. For the asymmetric modes, the same
sector would have a nodal line at one boundary and an antinodal line at the other
boundary. This arrangement of nodal lines will be identical for all modes, although
there will be additional nodal lines within the 90-deg sector for higher-frequency

modes,

The reason for analyzing a sector rather than the entire shell is that fewer
triangular elements are needed, thereby reducing the order of the various matrices
of the problem, However, the boundary conditions are more difficult to formulate
than if the entire shell were analyzed. Modeling only a quadrant of the shell is valid
only if the shell is uniform in the circumferential direction., If it has nonuniform

properties, then it is necessary to analyze the complete shell,
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Fig., 3.1, Nodal patterns of the symmetric
flexural modes

Fig. 3.2. Nodal patterns of the asym-
metric flexural modes
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The coordinate system and the forces and displacements corresponding to the
variables required by the program are shown in Fig, 3,3. Assume that the shell
boundary at X, 0, Z is a radial nodal line. For this case, a particle on this boundary
will not translate radially or meridianally, and will not rotate about a circumferential
axis, To represent these conditions, the required displacement constraints refer-

enced to the overall coordinate system are:

Uy = 0
u, =0 (nodal line at X, 0, Z)
6, =0 (3.1)

This set of symmetry conditions is adequate to describe the characteristics of
the nodal line even though further definition is possible. For example, an additional
restraint can be formulated based upon the only allowable rotation at the boundary,

which is about the meridianal axis (9¢ in Fig, 2, 3). One can write

GX = e¢ cos ¢

GZ = Od) sin ¢
Eliminating 9¢, find

GX = GZ ctn ¢

which can be imposed as an additional constraint, However, if this constraint is not
imposed, then certain modes computed using Eq. (1) should yield this constraint
naturally and provide a check on the analysis, It is recommended that boundary
conditions should be formulated on as simple a basis as possible consistent with the

problem being solved.

Consider the meridianal line X, 0, Z as an antinode, For this case, a particle
on the boundary will not translate circumferentially, and will not rotate about a

meridianal axis; therefore

uY =0
(antinodal line at X, 0, Z)

GX =0 (3.2)

49




JPL Technical Memorandum 33-305

Fig., 3, 3.

Displacement variables and coordinates
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At the gridpoint at the apex of the sector, the variables 6y and 6¢ lose their
directional significance (Fig. 2.3). However, arguing that at this point several nodal
lines meet, each requiring certain directional rotations to be zero, the only way of
satisfying all of the conditions is to disallow any rotation at this point. Thus, the

boundary conditions at the apex gridpoint of the sector will be taken as

UX =0
UY =0
UZ =0
GX =0
GY =0
eZ =0 (3.3)

This completes the definition of types of boundary conditions for the flexural
modes. It should be noted that along the outer edge of the shell none of the displace-
ments or rotations are zero, the forces and moments being zero, However, for the
dynamics part of the analysis the force and moment conditions are not used because
they are inertial; hence, they are proportional to displacements and rotations which

have already been specified,

3.3 Element Geometry

The facet geometry should be selected consistent with the data that is to be
determined. In the present case, only the lower flexural modes are to be determined.
Assume that the fifth flexural mode is the highest mode of interest. The arc of a half
wavelength of the fifth mode is 1/10 (360 deg) = 36 deg. Assuming that only a rough
outline of the mode shape is required, two or three displacement values within this
angular span should be sufficient, implying a separation of radial gridpoint lines of

12 to 15 deg.

The number of gridpoint circles is dependent upon the number of radial dis-

placements required. For the low-frequency flexural modes, only two or three
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radial displacements values are generally needed; however, if torsional modes are
of interest, more gridpoint circles should be used. In the present case six gridpoint

circles are used; hence, the shell sector is subdivided as indicated in Fig. 3. 4.

Good practice in locating gridpoints is that the resultant triangles have sides
that are approximately equal in length (equilateral). Hence, not all intersecting
points in Fig., 3.4 will be used; however, one possible array, which reflects some
internal symmetry, is shown in Fig. 3.5. Also shown in Fig. 3.5 is the gridpoint
numbering, With respect to the overall coordinates X, Y, Z, each gridpoint location

is listed in Table 3-1.

3,4 Gridpoint Referenced Boundary Conditions

The boundary conditions defined by Eqgs. (3) and (4) are general expressions
not referenced to any particular gridpoints. With reference to the gridpoint number -
ing arrangement of Fig. 3.5, the boundary conditions for the two types of vibration

modes are listed in Tables 3-2 and 3-3,

Table 3-1. Gridpoint coordinates

Gridpoint X \% z
1 0.0 0.0 28,50
2 1,800 0.0 238,44
3 1,273 1,273 28, 44
4 0.0 1.800 28, 44
5 3.500 0.0 28.28
6 3.233 1.339 28,28
7 2,475 2,475 28,28
8 1,339 3,233 28,28
9 0.0 3.500 28,28
10 5,200 0.0 28,02
11 5.100 1.014 28,02
12 4, 326 2,889 28,02
13 2,889 4, 326 28,02
14 1.014 5.100 28,02
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Table 3-1 (Cont'd)

Gridpoint

b4 y z
15 0.0 5.200 28,02
16 6. 900 0.0 27,65
17 6, 375 2, 640 27,65
18 4, 879 4, 879 27,65
19 2, 640 6. 375 27, 65
20 0.0 6. 900 27,65
21 8. 700 0.0 27,14
22 8,533 1,697 27.14
23 8,038 3.329 27,14
24 7,234 4, 833 27,14
25 6.152 6.152 27,14
26 4, 833 7.234 27,14
27 3. 329 8,033 27,14
28 1,697 8.533 27.14
29 0.0 8. 700 27,14
30 10. 60 0.0 26,46
31 10, 40 2,068 26, 46
32 9. 793 4,056 26, 46
33 8. 814 5, 889 26,46
34 7,495 7.495 26,46
35 5. 889 8. 814 26,46
36 4,056 9.793 26, 46
37 2.068 10, 40 26, 46
38 0.0 10, 60 26, 46
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Fig. 3.4. Subdivision of shell sector
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Fig. 3.5. Arrangement of facets
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Table 3-2. Boundary conditions for symmetric modes
Gridpoint i 4 Yy, vz, Ox. Oy, oz,
2 0.0 1.0 0.0 1.0 0.0 1.0
5 0.0 1.0 0.0 1.0 0.0 1.0
10 0.0 1.0 0.0 1.0 0.0 1.0
16 0.0 1.0 0.0 1.0 0.0 1.0
21 0.0 1.0 0.0 1.0 0.0 1.0
30 0.0 1.0 0.0 1.0 0.0 1.0
1 0.0 0.0 0.0 0.0 0.0 0.0
4 1.0 0.0 0.0 0.0 1.0 1.0
9 1,0 0.0 0.0 0.0 1.0 1.0
15 1,0 0.0 0.0 0.0 1.0 1.0
20 1.0 0.0 0.0 0.0 1.0 1.0
29 1.0 0.0 0.0 0.0 1.0 1.0
38 1.0 0.0 0.0 0.0 1.0 1.0
Table 3-3, Boundary conditions for asymmetric modes

Gridpoint i x. Yy, vz, Ox, v, oz,
2 0.0 1.0 0.0 1.0 0.0 1.0
5 0.0 1.0 0.0 0.0 1.0
10 0.0 1.0 0.0 1. 0.0 1.0
16 0.0 1.0 0.0 1, 0.0 1.0
21 0.0 1.0 0.0 1, 0.0 1.0
30 0.0 1.0 0.0 0.0 1.0
1 0.0 0.0 0.0 0.0 0.0
0.0 1.0 1.0 1. 0.0 1.0

0.0 1.0 1.0 . 0.0 1.0

15 0.0 1.0 1.0 0.0 1.0
20 0.0 1.0 1.0 0.0 1.0
29 0.0 1.0 1.0 1, 0.0 1,0
38 0.0 1.0 1.0 1.0 0.0 1.0
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3.5 Estimation of Matrix Size

In the SAMIS program, two subprograms, which have limited capacity, generally
control the size of problems that can be solved without partitioning*. The ROOT
subprogram (which calculates eigenvalues) is limited to 130 deg of freedom
(either local or generalized). The CHOL subprogram (which solves simultaneous
equations) is limited to core storage of 20,000 words. However, for CHOL only the
diagonal and upper off-diagonal elements and two column vectors of the dimension of
the matrix equation being solved must be stored. Thus the largest solid matrix of

order b that can be handled in CHOL is defined by the equation:

2
b b _
(2 +2>+ 2b = 20,000

from which b = 197, Since stiffness matrices are generally very sparse, the limit

on b is greatly relaxed in most structural problems,

A rapid estimate of the size of the stiffness matrix that will be generated can be
made after the triangular array and gridpoint numbering have been defined., Consider,
as an example, the triangular grid and gridpoint numbering of the idealized quarter
shell (Fig. 3.5). A chartis prepared by designating a row and column for each grid-
point as shown in Fig, 3.6. Coupling between gridpoints is then indicated by filling
in the appropriate squares., This is done only for the diagonal and upper off-diagonal,
since this is the data used in CHOL., The CHOL subprogram in SAMIS is band-
limited, which means that of all the matrix elements in the upper off-diagonal only
the zero and nonzero elements below the heavy solid line in Fig, 3.6 are stored.
Each square below this line represents a 6 x 6 matrix; thus, if the squares are
counted and multiplied by 36, an estimate of the total number of elements that must
be stored is obtained, In the present example, the number of squares is 270, which
corresponds to 9720 storage locations. Note that in this problem elimination of rows
and columns by imposition of the symmetry conditions will reduce slightly the
storage needed for this matrix., In some problems this reduction will be significant

and should be accounted for in the calculation, A tabular method of estimating the

amount of storage space required is defined in Ref. 2,

sk

"Current development of the program is aimed at elimination of these limitations.
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Should it be found that the matrix does not fit in core, then the problem must be

solved by partitioning the matrix equation one or more times. This procedure is

outlined in Section 5. 0.

The procedure outlined above for estimating the storage size of the matrix
shows that the bandwidth of storable data is controlled by the sequence of gridpoint

numbering., Optimum gridpoint numbering results in a minimum-bandwidth matrix,

3.6 Influence of Rigid Body Modes

The constraints imposed on the 90-deg shell sector for the symmetric and
asymmetric modes are not sufficient to eliminate all rigid body modes., For the
symmetric mode case, a rigid rotation of the shell about the Z-axis can occur., For
the asymmetric mode case, a rotation about the meridian defined as a nodal line can
occur (shallow shell). The presence of these rigid body modes causes the stiffness
matrix to be nonpositive-definite, This offers no problem if the mass matrix is
inverted in solving the dynamics problem, because the ROOT subprogram will deter-
mine the eigenvalues and eigenvectors of zero-frequency modes. However, if the
mass matrix is singular, which is often the case (e.g., rotary inertias neglected),
inversion of the nonsingular partition of the mass matrix will lead to less accurate
low-frequency eigenvalues than if the stiffness matrix is inverted. This occurs
because round-off errors have a greater influence on the lower-valued roots, and in
inverting the mass matrix the actual eigenvalues are determined; whereas if the
stiffness matrix is inverted, the reciprocals of the eigenvalues are determined.
Thus, in most problems the stiffness matrix should be inverted. To do this the
influence of the rigid body modes must be eliminated. The process of eliminating

these modes is outlined below for the two cases of interest in this problem,

3.7 Elimination of the Rigid Body Mode for the Symmetric Mode Case

For a rigid body rotation of magnitude Y about the Z-axis, the displacements of

a gridpoint j, as shown in Fig. 3.7, are defined by the equations

il

u

. -x. {1l -cosY¥Y) -vy.sinY
ix XJ( ) Y

u

jY

7Y (1 - cosY) + X, sinY (3. 4)

where xj and yj are the original coordinates of gridpoint j,
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Fig. 3.7. Rigid body rotation, symmetric modes
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The general orthogonality condition between two modes r and s is
N
(r) (s) (r) (s)| _
: [qu mj qu + qu mj qu =0 (3.5)
j=1

which is valid whether the modes are rigid body or elastic. Substituting Eq. (4) into

(5) and making the small angle approximation, yields

N
(s) (s) | _
Z [-yj mj qu + xj mj qu] =0

j=1

We now want to expand this equation and solve for one of the gridpoint displacements

in terms of the others., For convenience we will select the lowest nonzero term which

(s)

is sy s which gives:

Further expansion of this equation yields

u8) 27373 (s) V33 (s) Va4 (s) |, Ks™s (s)
2Y x,m, 3Y x,m, 3X X,m, 4X X,m, 5Y

X, m m 38 X.m u(S) - m u(S)
4676 (s) _Y6™6 (S)+"'Z i Ny T YT X

u - u
x, M, 6Y x,1m, 6X X,m.,

j=17

(s)

The displacement U5y is dependent upon the remaining variables which are still inde-

pendent. For these can write

(s) _  (s)

U3x T U3x

(s) _  (s)

Y3y T Y3y

(s) _ (s)
Y3gy T Y38Y
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Imposing the notation that a displacement in the X direction have subscript 1 and a

displacement in the Y direction have subscript 2, we can write the above results in

matrix format as follows (notation consistent with SAMIS):

—

() (s) (Y33 X3y
422 X.,m X, m
272 272
u31 1.0 0
Uz, 0 1.0
Uy 0 0

U382

O _

YaMy +x5m5 x,m,
*2™M2 XMy %M
0 0 0
0 0 0
1.0 0 0
0 1.0 0

1.

31
u

32
41

52

(s)

>_(3.6)

%382

N

This equation may be interpreted as a variable transformation, which in compact

notation may be written as

where { S }O is the original displacement vector and fé }

placement vector.

3.8 Elimination of the Rigid Body Mode for the Asymmetric Mode Case

{sho = [1] 1sby

N

is the transformed dis-

For the asymmetric modes a rigid body rotation can occur about a diametrical

nodal line as shown in Fig., 3. 8.

ments of gridpoint j are given by:

u = -yj(l—cosY) —Ej sin Y

jY

u, = -Ej (1 - cosY) + Y sin Y

Jz

62
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& N|

Uy/

Fig. 3.8. Rigid body rotation, asymmetric modes
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where Y; and ;j are the original coordinates of gridpoint j in terms of coordinates YZ
and defined in Fig, 3. 8. Making the small-angle approximation we obtain from
Eq. (3.7)

Now, using Eq. (3.5), substituting for the displacements and solving for u(;zz,

we obtain

() - Z2™2 (s) , Z3™3 (s) , Z4T4 (s)

U3z m, Y2y T y.m, U3y T oyom, Y4y
y3Ma Y3iits Y33
L2575 (s) L. NTN u(s)
y,m, 5Y y,m, NY
CYaTa (s) Ve (s) .. INTIN (o)

Imposing the notation that a displacement in the Y direction have subscript 2 and a
displacement in the Z direction have subscript 3, we can write the variable trans-

formation equation as follows:

s \(s) r ] / (s)
u,, 1.0 0 0 0 0 ... U,
usz, 0 1.0 0 0 0 Uz,

. szz z3m3 z4m4 y4m4 ...... .

33 Y3y Y™y Y™z V3™ 42
uy, 0 0 1.0 0 Uy,

'< > N 0 0 0 1.0 . g (3-8)

u,, 0 e

u 1.0 u
\"382) 4 L ) 383
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It should be noted that if additional rigid body modes were present in the system,
a more complicated transformation would have to be defined and applied. The worst
case would occur if all six rigid body modes had to be swept from the system, This
was unnecessary in the present problem because, through the application of the
symmetry boundary conditions, the remaining two rotational modes and the three

translational modes were eliminated.

3.9 Method of Dynamic Analysis

Just as in the stress problem, the manipulations: required in the SAMIS to solve
for the mode shapes and frequencies of the free shallow shell are controlled by a set
of pseudo instructions. For the dynamic analysis, the pseudo program will be used
twice, once to obtain the symmetric modes, and a second time for the asymmetric
modes. The set of pseudo instructions used in this problem is listed in Table 3-4.
These instructions demonstrate the use of comment cards, which appear in the listing
for user purposes, but are not interpreted during problem solution. The comment
cards are identified by the letter C in the first column. The mathematical manipula -
tions the numbered instructions describe are explained in the individual synopses of

the instructions that follow.

Instructions 1.0 through 3,0 direct the formation of the structure mass and

stiffness matrices.

1.0 BILD: Generate the element stiffness matrices (KER0O1 through

1.5 CONT: KERO054) and the element mass matrices (MER0O1 through
MERO054) for the 54 elements of the shell idealization. The
stiffness matrices are stored in sequence on tape 9, loca-
tions 001 through 054. Similarly the mass matrices are
stored on tape 10. The units digit of the number in the E
field specifies the type of mass matrix that is to be
generated (see BILD description in Ref. 1 for details of
this option). The continue instruction (CONT) must be
used when element mass matrices are generated,

2,0 ADDS Add the element mass and stiffness matrices to form the

3.0 ADDS} complete structure matrices. These are:
a, MARO0O]l: the structure mass matrix which is stored

on tape 11, location 1.
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Listing of the pseudo instructions for the calculation of the
mode shapes and frequencies of the unsupported shell

Field A Field B Field D Field C Field E
Pseudo
instruction Tape | Matrix | Tape | Matrix | . Pseud‘o Tape | Matrix | Control
No. instruction
No. name No. name No. name No.
name
C
C Shallow shell problem, low frequency flexural modes of free shell.
C
C Formation of the structure mass and stiffness matrices.
C
1.0 09001 | KEROO1 BILD 5402
1.5 10001 [ MEROO1L CONT
2.0 10001 |[MERO0O1 ADDS 11001 | MAROO1 5400
3.0 9001 | KERO0O1 ADDS 11002 | KAROO1 5400
C
C Imposition of symmetry and boundary conditions.
C
4.0 9001 | VTRO0O01 READ
5.0 9001 | VTRO0O01 COLS 9002 | VTCO001
6.0 9002 {VTCO0O01 FLIP 9003 | VFROO1
7.0 11002 | KAROO1 | 9002 | VTCO0O! MULT 10001 | KVCO001
8.0 09003 | VFRO0OO01 | 10001 | KVCO001 MULT 10002 | KTCO001
9.0 10002 | KTCO0O01 ROWS 11003 | KTRO001
10.0 11001 MAROO1| 9002 |VTCO00l MULT 10001 | MVCO001
11.0 9003 | VEFRO0OOL [ 10001 | MVCO001 MULT 10002 | MTCO001
C
C Decomposition of the mass matrix.
C
12.0 10002 [ MTCO0O01 ROWS 11004 | MTROO1
13.0 11004 [MTRO001| 9002 | MRROO1 CHIN 11005 | MIROO1
14.0 9002 | MRROO1 FLIP 10001 | MFCO0O01
C
C Formation of the dynamic matrix.
C
15.0 11003 | KTROOL | 10001 | MFCO0O01 CHOL 10002 | KBCO001
16.0 9002 | MRR0O1| 10002 | KBCO0O1 MULT 11006 [ DYCO001
17.0 11006 [ DYCO001 DECO 10001 | DYDO0O1
C
C Determination of eigenvalues and eigenvectors.
C
18.0 10001 |[DYDOO1 | 10002 | EVDO0O1 ROOT 10003 | EIDOO1 -100
19.0 10002 | EVDO0O1 CODE 9002 | EVCO001
'®
C Inverse Transformation of the eigenvectors.
C
20.0 11005 | MIROO1 2002 { EVCO001 MULT 11007 | ETCO001
21.0 11007 | ETCO001 COLS 10004 | ETCO001
22.0 9001 | VTROO1 | 10004 | ETCO001 MULT 11007 | ETCO0O01
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Table 3-4 (cont'd)
Field A Field B Field D Field C Field E
Pseudo
instruction Tape | Matrix | Tape Matrix |. Pseud.o Tape Matrix |Control
No. instruction
No. name No. name No. name No.
name
C
C Printout of results,
C
23.0 10003 [ EIDO0O1 INKS 1
24,0 11007 [ ETCO001 INKS 1
25.0 HALT
4.0 10001 [ WAROO1 READ
5.0 10001 |WARO001|11002| KAROO1 WASH 11003 | KTR0OO1
11.0 10001 [WAROO1 11001 ] MAROO1 WASH 10002 | MTCO001
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b. KAROO1l: the structure stiffness matrix which is

stored on tape 11, location 2.

Instructions 4,0 through 11,0 direct imposition of symmetry and boundary
conditions,
4.0 READ: Transfer the variable transformation matrix VITR001 from
the data input tape to tape 9, location 001.

5.0 COLS: Column-list the variable transformation matrix and store
the resultant matrix VTCOOl on tape 9, location 002.

6.0 FLIP: Transpose VTCO0O01; title the resultant matrix VFROOLl and
store it on tape 9, location 003,

7.0 MULT Transform the stiffness matrix KAROO]l and the mass

38 1}\{/[8&5 matrix MAROO1 by a pre- and post-multiplication consistent

10.0 MULT with the following mathematical treatment of the problem:

11.0 MULT

After combining the stiffness and mass matrices the

dynamic equation is of the form

M) fs )= (K146}

where, as yet, the system is unconstrained. The
variable transformation matrix contains the transfor-
mation to eliminate the rigid body modes, Eq. (3.6)

or (3. 8), depending upon the problem being run, and

the zero diagonal elements to impose zero displace-
ment conditions, Table 3-2 or 3-3. The transformation

is defined by:

fot= [VIe™}

where {6:':} is the vector of nonzero displacement
variables. Imposing this transformation on the

dynamic equation leads to

W2 M) [V 6™} = (K] [V]{e™}
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Premultiplying by [v]T :

N V1T I V] 46%) = )T K] (V] 6%}

2 67 = (x4

where
[K*] = [KTR001]
[M*] = [MTRO01]

Instructions 12.0 through 14. 0 involve decomposition of the mass matrix, which

is required to maintain matrix symmetry,

12.0 ROWS: Row-list the mass matrix and store the output matrix
MTROO1 on tape 11, location 004.

13.0 CHIN: Triangular decompose the mass matrix MTROO1 using the
Choleski Decomposition technique. The upper triangular
decomposition matrix is MRR0OO1 and is stored on tape 9,
location 002. The inverse of MRROO1 is designated
MIROOI and is stored on tape 11, location 005,

14,0 FLIP: Transpose the matrix MRROO1, and designate the resultant
matrix MFCO00]1 and store it on tape 10, location 001,

Instructions 15.0 through 17,0 direct formulation of the dynamic matrix. By

instructions 18.0 and 19. 0 the eigenvalues and eigenvectors are determined,

15,0 CHOL Perform a matrix inversion and triple product consistent
16.0 MULT with the following mathematical requirements.
Starting with

32 (0T [ {6™) = [x*1{s*}
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where

[0]T [U] = [M*]  (From CHIN)
Define
{5} = [1{s"}

then

(6%} = () {5}

Substitute into the matrix equation to obtain

Vot et (Kt T

Premultiply by [U] [K*]_lz

Z (o] (k]! (U] st - (]S

Instruction 15, 0 determines [K*]_l [U]T, and instruc-
tion 16. 0 determines [U] [K*]_l [U]T. The necessity

for decomposing the mass matrix (or stiffness matrix)
is to obtain a symmetric dynamic matrix. If the stiff-
ness matrix were simply inverted to obtain [K*]_l [M],

the resultant matrix would not be symmetric as

required by ROOT,

Decode the matrix DYCO001l. Title the decoded matrix
DYDO0O01 and store it on tape 10, location 001,

Calculate the eigenvectors EVDO0O1 (stored on tape 10,
location 002) and the eigenvalues EIDOO1 (stored on tape 10,
location 003). The -100 in the E field instructs the printout
of all eigenvalues directly from ROOT. This provides the
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interpretation of the eigenvalues as frequency (see the
ROOT description in Ref. 2 for details of this option).
Recode the eigenvectors as EVC001 and store them on

tape 9, location 002,

Instructions 20. 0 through 22,0 perform the inverse transformation of the

eigenvectors. Instructions 23.0 and 24.0 direct printout of the results.

20,0 MULT:

21,0 COLS:

22,0 MULT:

23,0 INKS
24, 0 INKS

25.0 HALT:

Transform the eigenvectors to obtain {6='<} as per the

relation already cited:

where the {6} correspond to the set EVCO0O01.

Transfer matrix ETC001 from tape 11, location 007 to
tape 10, location 004. In this pseudo instruction program
the data on tape 11 are saved for possible program
recovery.

Perform the transformation from {6*} to {6} as per the

relation

{s} = v1{s'}

The {b} are the eigenvectors of the shell referenced to the
overall coordinate system X, Y, Z.

The eigenvalues EIDOO! (stored on tape 10, location 003)
and the eigenvectors ETCO001 (stored on tape 11, loca-
tion 007) are transferred to the data printout tape with
appropriate single-line titles,

HALT operation on this problem.

It should be noted that, in this set of pseudo instructions,
if tape 11 is saved the program has built-in recovery at

various instructions such as 4, 13, and 17.

In many problems it is not required to eliminate rigid body
modes because the structure is adequately supported. For

these problems only a WASH operation is needed. The
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pseudo instruction modifications required by this option
are listed at the bottom of Table 3-4. These instructions
replace instructions 4 through 11 when only a WASH opera-
tion is used. If desired, a further reduction is to omit the
WASH instructions and define boundary conditions by the
continuity numbers in the element data. However, with
this option the structural matrices must be regenerated if

the boundary conditions are changed.

3.10 Description of Input Data

In the present example, the pseudo instruction program is headed by a genera-

tion phase (BILD); thus the order of listing of input data is the same as in the stress

problem (Section 2, 0).

Regarding each type of input, the following comments apply:

a.
b.

Pseudo instructions: The listing is given in Table 3-4.
Material table: Same as that used in the statics problem.

Zero card: Required after material table in all programs.
Element data: The format of the element data for the dynamics
problem is defined in Ref, 1, Tables 7-4 and 7-6. In general,
less data must be supplied for the dynamics problem than for
the stress problem. The two cards of element input data for
element 1 (Fig. 3.5) having gridpoints 1, 2, 3 are given in

Fig. 3.9.

The matrix data and title cards have the same format as outlined in Section 2.0, A

complete listing of the input data for the dynamics problem is given in Appendix E.

3.11 Interpretation of Output Data

In the present example, output from the program is obtained from three

instructions of the pseudo instruction program. In instruction 18.0, the -100 flags

printout of all eigenvalues. By instructions 23. 0 and 24. 0 the eigenvalues EID0O1 are

again printed out as well as the eigenvectors ETCO00I (with appropriate title

cards).

In this problem the initial dimension of the program-generated mass matrix

MAROOI is 114 (three times number of gridpoints). However, by the coordinate
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ELEMENT FIRST THIRD FACET
No. GRIDPOINT GRIDPOINT THICKNESS
No. 7 No. 7
IRREINE 2| R 1 1 [, ] e6e-5 0. 075 J20]
\_ XELEMENT LSECOND /
CARD IDENTITY GRIDPOINT MASS PER MATERIAL
(FACET) No. UNIT AREA IDENTITY
ELEMENT FIRST SECOND SECOND THIRD OVERALL
No. GRIDPOINT GRIDPOINT GRIDPOINT GRIDPOINT  COORD:
Y cooreﬁ7 X coon)o7 z cooi&] Y cooa’o7 7
ol [1]] | o, o 28.50 .i.800 Lo 28 44, 1. 273 1 273 28 adfp |
\ FIRST ZFIRST Zs:com) LTHIRD ZTHIRD
CARD GRIDPOINT GRIDPOINT GRIDPOINT GRIDPOINT GRIDPOINT
No. X COORD. Z COORD. Y COORD. X COORD. Z COORD.

Fig. 3.9. Element data for Element 1 of shell dynamics problem
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transformation of the mass matrix the order is reduced to 86 for the symmetric

modes and to 92 for the asymmetric modes.

The output from instruction 18,0 is shown in Table 3-5 for the symmetric
mode case. Only 50 of the 86 eigenvalues are shown, although the entire 86 were
listed by the instruction. In most problems the natural frequencies will appear in
one or the other of the two columns on the right. If the stiffness matrix is inverted,
the frequencies appear in the last column, starting with the lowest value. If the
mass matrix is inverted, the frequencies appear in the next to last column starting
with the largest value. The remaining three columns are provided in the event a
problem is solved in which the eigenvalues have a different interpretation from that

given above.

The printout by instruction 23.0, which is shown in Table 3-6, is the complete
set of eigenvalues, which are identical to those in the column of eigenvalues in
Table 3-5. For ordinary structural problems this printout is not as useful as the
direct printout from ROOT because the actual natural frequencies must still be
computed. However, it should be noted from this printout that the eigenvalue
matrix is a diagonal square matrix suitable for scaling purposes in specialized

problems.

A sample listing of the eigenvectors is given in Table 3-7. In this listing,
column 10 corresponds to eigenvalue 01, column 20 to eigenvalue 02, etc. The row
numbers define the gridpoint number and direction at which the deflection occurs.
For example, the row code 352 defines the displacement as that at gridpoint 35 in
the overall Y direction (component 2). For the first flexural mode this displace-

ment has a relative value of 9.219,

It should be noted that the eigenvectors generated by ROOT are normalized to

unit length, However, in the process of transformation by the inverse of the

decomposed mass matrix to express displacements in their original form, the vector

length is changed. This change in length, however, assures that the generalized

mass matrix is a unit diagonal matrix.

3.12 Summary and Discussion of Results

Several of the flexural natural modes and frequencies of the shallow spherical

shell were obtained by three different methods. Theoretical values were computed
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Table 3.5 Printout of eigenvalues for the symmetric modes

NO.

EIGENVALUES OF

EIGENVALUE
0.2176E-0C4%
0.8187E-06
0.1719E-06
0.7999€E-~-07
0.1946E-07
0.1627E-~07
0.1611E-07
0.1370E-07
J.1014E-07
J«6350E-08
0.5185E-08
Ue4455E-08
0.2149E-08
0.1594E~08
0.1352E-08
0.1338E-08
0.1305E-08
0.1144E-08
0.6551£-09
0.5315E-09
0.4241E-09
0.3341€E-09
0.3086E-09
0.2990E-09
0.2416E-09
0.1648E-09
0.1631E-09
0.1559E-09
0.1458E-09
C.1365E-09
0.1265E-09
0.1068E-09
0.1042E-09
0.9991E-10
0.8768E-10
0.8403E-10
0.7833E-10
0.7292E-10
0.7091E-10
0.6899E-10
0.6134E-10
0.5813E-10
0.5680E-10
0.5382E-10
0.5234E-10
0.5142E-10
0.4866£-10
0.4847E-10
0.4528E-10
0.4276E-10

SQUARE ROOT

0.4665E-02
0.9048E~-03
0.4146E-03
0.2828E-03
0.1395€E-03
0.1276E-03
C.1269E-03
0.1170E-03
0.1007E-03
C.7969E~04
0.7201E-04
C.6675E-04
C.4635E-04
0.3993E-04
0.36T78E-04
0.3658BE-04
0.3613E-04
0.3382E-04
0.2560E-04
0.2305E-04
0.2059E-04
0.1828E~04
0.1757E-04
0.1729E-04
0.1554E-04
0.1284E-04
0.1277E-04
0.1249E-04
0.1207E-04
0.1168E-04
0.1125E-04
0.1033E-04
0.1021E-04
0.9996E-05
0.9364E-05
0.9167E-05
0.8851E-05
0.8539E-05
0.8421E~05
0.8306E-05
0.7832E-05
0.7624E-05
0.7536E-05
0.7336E-05
0.7235E-05
0.7171E-05
0.6976E-05
0.6962E-05
0.6729€E-05
0.6539E-05

MATRIX DYD

RECIPROCAL

0.2144E
0.1105€
0.2412E
0.3536E
0.7168E
0.7839¢€
0.7879E
0.8544E
0.9931E
0.1255E
0.13893E
0.1498E
0.2157E
0.25C4E
0.2719E
0.2734E
0.2768E
0.2957E
0.3907E
C.4338E
0.4856E
J«.547T1E
0.5693¢
0.5784E
0.6433E
0.7790E
0.7830E
0.8008E
0.8282E
0.8559E
0.8891E
0.9677E
0.9798E
0.1000E
0.1068E
C.1091€
0.1130€
0.1171E
0.1188€E
0.1204E
0.1277E
0.1312E
0.1327E
0.1363E
0.1382E
0.1395E
0.1434E
0.1436E
0.1486E
0.1529E

75

03
04
04
04
04
04
C4
04
04
05
G5
05
05
05
05
05
05
05
05
05
C5
05
G5
05
05
05
05
05
65
05
05
05
05
06
06
06
06
cé
06
06
06
06
06
06
06
06
06
06
0¢
06
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from equations derived by Johnson and Reissner as set forth in Ref. 6. Experimental

JPL Technical Memorandum 33-305

values were determined from impulse response acceleration-recordings of the

shallow spherical shell suspended from a single wire.

application of the finite element method were obtained by use of SAMIS as described.

Finally, values predicted by

The natural frequencies obtained by the three methods are presented in Table 3-8.

Table 3-8,

Natural frequencies of the shallow spherical shell

Seven nodal
diameters

SAMIS SAMIS
Theoretical Experimental computed computed
Mode description frequency, frequency, frequency, frequency,
cps cps conf. No. 1, conf. No. 2%,
cps cps
First symmetric 36.0 37.2 34.1 34,8
Two nodal
diameters
First asymmetric 86. 6 90.0 91.5 --
Three nodal
diameters
Second symmetric 154 150 178 167
Four nodal
diameters
Second asymmetric 236 240 278 --
Five nodal
diameters
Third symmetric 332 -- 387 370
Six nodal
diameters
Third asymmetric -- -~ 491 --

“These results are discussed subsequently in this paragraph.
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The in-plane and out-of-plane mode displacements for the first symmetric and
asymmetric modes are shown in Figs. 3.10 and 3.12. The out-of-plane displacements
for the second and third modes are shown in Figs. 3.11 and 3.13. Corresponding
theoretical and experimental mode shapes were not determined due to the complexity

of the measurements and calculations required to obtain these data.

The computed results for the shallow shell show general agreement with theory.
The first symmetric and asymmetric mode frequencies agree with theoretical and
experimental results well within normal engineering accuracy. However, the com-
puted frequencies for the higher modes show greater divergence from experimental
values than was expected. For these modes, the shapes possess the required
symmetry, except near the apex of the shell (Fig. 3.11). For the second mode, the
displacements at gridpoints 6 and 8 are opposite in polarity to displacements of the
remainder of the structure. Similar behavior is observed in the third mode at
gridpoint 7 (Fig. 3.11). These displacement anomalies significantly distort the mode
shapes, and were suspected to be the conditions causing the large error in frequency.
Study of the triangular array (Fig. 3.5) revealed that, for the second mode, element
number 11 (typical) was required to represent a large change in slope (including
polarity) between gridpoints 11 and 12. For the third mode, similar conditions
existed for elements 13 and 22. To alleviate this condition, the structure was further
subdivided, increasing the number of elements from 54 to 68 (Fig. 3.14). Solution for
the symmetric modes and frequencies only was repeated. The results obtained show
significant improvement in the frequency prediction (comparison of the fifth and sixth
columns in Table 3-8) and correction of the modal displacements to more physically
rational shapes (Fig. 3.15). For the symmetric modes, comparison of theoretical
and SAMIS computed frequencies indicates -3 percent error in the first mode,
+8.4 percent error in the second mode, and +11.4 percent error in the third mode. It
is suspected that part of this error may be due to the particular mass lumping
technique that was used. This technique was to place one-third the mass of each
element at each of its nodes. This method of mass lumping as well as several others

1s currently under study.

The mode shapes obtained from use of both the original and the refined tri-
angular arrays exhibit, in general, smooth variations that phase correctly over the
shell surface (with the exception already noted). Nodal lines aredistinctly susceptible

of interpolation for a!l modes and have approximately the correct angular spacing.
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| 4 9 15 20 29 38

6.93

7.22

f
.86

IN PLANE

computed — 34.1cps

OUT OF PLANE

Fig. 3.10. Computed shape of the first symmetric
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Fig. 3.11.
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feomputed = 378 Cps

Out-of-plane displacements of the second and third symmetric modes
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38 o
L 4
0.47
fcompund = 91.5cps
IN PLANE
38 o
—61.8 vy
—-47.1
NODAL LINE
OUT OF PLANE

Fig. 3.12. Computed shape of first asymmetric mode
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-28.1 LINE

f comnntad =278 CPS

38
~67.0 i
—31.5
— NODAL
LINE

fcompuud =49l cps

80.0 \
NODAL LINE

Fig., 3.13. Out-of-plane displacements of the second and

third asymmetric modes
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Fig. 3.14. Refined triangular element idealization of shell sector
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Fig. 3.15. Refined out-of-plane symmetric modes
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—28.51

0 6876 \NODAL LINE
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computed

Fig. 3.15 (Cont'd)
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The single-step refinement procedure of the shell dynamics problem described
above typifies one approach the user may adopt in gaining confidence in problem
solutions, Generally, if errors have been made in element data, or if a poor
structural idealization has been made, these conditions will be reflected in peculiari-
ties in the solutions. It has been the experience of the JPL users that input errors
of this type cause variations in a solution that tend to be localized in the same region
as the original error, and recognition of this has speeded correction of several

problems,

In conclusion, it should be noted that in the idealization of Fig. 3. 14 the

gridpoint numbering is not consecutive, In general, this procedure should be

or for utilization of the node discontinuity capability.

3.13 Alternate Concepts of Dynamic Analysis

Mathematically, the form of the dynamic equation usually encountered in

analyses with the SAMIS program is:
|
v [mio ] [20] = [Sitee] oy
010 ]62| ka11%22 ]| B2

That is, the stiffness representation of the structure is more refined than the
inertial representation. One condition that leads to this inconsistency of rank is
neglect of rotary inertia effects in generation of the structure mass matrix. For
structures with 6 degrees of freedom per gridpoint, this condition results in a mass

matrix one-half the order of the stiffness matrix.

A second condition that causes inconsistency is the capacity limitation of the
eigenvector and eigenvalue computation subprogram ROOT. Since in most problems
the lowest frequencies are of interest, the stiffness matrix is inverted and the final

form of the dynamic matrix is (see paragraph 3. 9):

0] = (W] [)*

where

W' (U] = [m]
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Thus, the size of [D] is defined by the order of [m] , which must be less than 131 to
satisfy the requirements of ROOT. Therefore, in discretizing a structure, a maxi-
mum of 130 mass coefficients may be specified on the diagonal. IFor planar truss
and frame structures this limitation is not normally severe because of the directional
motion characteristics of this type of structure. However, for three-dimensional
frame and shell structures, a gridpoint may move significant amounts in several
directions, each direction requiring a diagonal mass coefficient. Thus, if symmetry
conditions cannot be applied and user intuition regarding the shapes of the modes is
not firm, an assumed inertial representation within the 130 coefficient limitation

may not be satisfactory.

Two methods are outlined below that aid in alleviating the limitation on matrix
order for dynamic problems. Both methods involve transfer from local to a set of

generalized coordinates.

Assume for a given problem that the stiffness matrix has been generated and
constraints have been imposed consistent with specified boundary conditions. Then,
assuming that more than 130 discrete mass coefficients would be requirced to dis-
cretize the structure adequately, an alternate approach of defining 130 or less vector
locations of major inertial significance is selected. Next, a unit force is applied
sequentially at each preselected vector location. For this loading the static problem

is solved by inverting the stiffness matrix. That is, starting with

(k] {o} = {Fl

where

1 0 0
0 0 1
{F} = 0 0 0 (n < 130)

the solution is:
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where{{,} is a set of static deflection shapes of the constrained structure for unit

applied forces. This set of shapes is interpreted as a generalized set and applied to

the dynamics equation as follows:

{6} = [D] {a}

and

\ [m] {o} = [K] {6}

Hence

A% 0] [m] D] {a} = [D]" [¥] [D]{q} (3.9)

This equation may be written
¥ [m] {a} = [R]{a}

The solution for the )\iz and {qi} is effected by methods outlined in Section 3.9. The
mass matrix [m] in Eq. (9) is the set of coefficients assigned to the originally
selected 130 or less stations on the structure. The coefficients of the matrix aligned
with each orthogonal coordinate should represent the total mass of the structure.

Use of the static deflection shapes as pseudo modal functions essentially distributes
each point mass proportionately to each shape, which in turn relates directly to the
stiffness properties of the structure. This technique often provides a more accurate
representation of the structure per number of variables than if a set of discrete

displacement variables is used.

The second method of solving problems with more than 130 mass points is by
component mode synthesis techniques, as reported in Refs. 9 and 10. With this
approach, subsystems of the total structure are isolated, analyzed, and finally com-
bined with other subsystems, after each has been transformed to separate generalized
coordinates. To demonstrate the procedure, consider a structure made up of two

parts, subsystems A and B. For each subsystem, referenced to its own natural
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coordinates, the mass and stiffness equations are generated. In the present example

we have:

[mA]{UA} +[¥al {UA} - {0}
[mB]{UB} * [KB]{UB} - {O}

For each subsystem, appropriate eigenvectors [d:ij]are computed, which provide

the transformation to generalized coordinates, namely
n n
U\ = [eR { }
{ 1JA} ['”A] A
SR N {“}
(G}~ [Fap]on

The eigenvectors [do.lj]nnay be a superposition of several types, namely the normal
modes of the subsystem, rigid body modes, constraint modes* and/or attachment

modes®*, The process of forming the modal functions is repeated for all subsystems.

To combine the subsystems, a constraint condition must be imposed so that
displacements of subsystem A match displacements of subsystem B at common
points. However, in general, each subsystem is referenced to its own local
coordinate system, so in order to match displacements a coordinate transformation
is required. The transformation is simply the three-dimensional vector trans-

formation involving direction cosines, which will be designated \_{A and Y_ for the
two subsystems, At present, each transformation matrix must be generated by hand,

:::See Ref- 7'
#See Ref, 8.
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For subsystem A assume gridpoints i and j are to be matched with gridpoints of sub-

system B. The matrix of direction cosines for subsystem A is, therefore,

il 12 43 14 15 6 j1 j2 j3 j4 j5 j6

il
i2

Y

A 0

0

0

i3
i4
i5 0 YA 0 0
y - 16
AR
52 0 0 AN 0

Jj3
j4
j5 0 0 0 A

<l

jéL

A similar matrix can be written for subsystem B, assuming gridpoints k and fare
involved.

kl k2 k3 k4 k5 ké L1 £2 £3 £a f5 Ao

kl T
k2| Vp 0 0 0
k3
k4
k5

_ k6
[YB] N h
12 0 0 Y B 0

£3
24

/5 0 0 0 Y

£6
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Next by operations within SAMIS, the total Y matrix is defined, of the form:
= =Y
[v] = [YA l B}

which is to be premultiplied by the matrix of modal functions, namely

to obtain

[B) =[v] [¢]- [YA A i "B (bB}

This equation is actually an expression of the condition

EONESEVRESEH

or in terms of the generalized variables is:
o
Y - Y 6 =
[A ALT B B:l fat = 10} (3.10)

However, in equating the displacements of the two subsystems, the number of
independent variables is reduced in Eq. (3. 10). Hence, the equation can be written

in the form:

DD DI] D 0
4 @ a_{ - )-- (3.11)
iD I I
3 ) q 0

where {qu}are the dependent variables, the number of which is equal to the number
of displacements that have been equilibrated. At present, selection of the dependent

set is arbitrary, and is subject to the same consideration as selection of redundant
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members in the force method of analysis with respect to maximizing accuracy

(Ref. 9). Solving Eq. (3.11) for the dependent set yields:

SN

and the final transformation matrix is formed, namely:

{a} = [T] {ql} (3. 12)

This transformation will be used in subsequent calculations. The calculations
leading up to definition of [T] involve only real arithmetic and can be performed with

the current version of SAMIS once the Y matrix has been generated.

With the modal functions defined, the matrix equations for each subsystem

can be expressed in terms of generalized coordinates. For subsystem A:

[7a] {aa} * [Ba] {an) = 1o}

[EA] = {%}T [mA] {dfq}
EARRIRUSETY

After generalizing the subsystem equations, the subsystem matrices are

superimposed to form the dynamic equation of the composite system, each
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subsystem still being referenced to local coordinates., The form of the matrix

equation is

Next, the transformation defined by Eq. (3.12) is applied to obtain

(01" (] (2246} + (107 (<D (2] {a'} = {o}

which may be written as

>
[\
~
wd
S
o
O
—
S —
I
$
=S
P
0
—
S -
I
N
(@]
S —
(O8]
—
SN

Solution for the eigenvalues and eigenvectors is effected by methods defined in
Section 3,9. After the eigenvectors have been determined, the mode shapes for the

two subsystems in local coordinates are determined by transforming as follows:

u dr f O
1] A |
ai_jf “lo | b (] {ql}

where {ql} are the eigenvectors from Eq. (13).

It should be noted that the procedure outlined above for determining dynamic
characteristics is also the preparatory process for solving the forced motion

problem, as discussed in Refs. 7 and 8.

3,14 Use of Multiple Coordinate Systems

Most problems, particularly those with single component structures, are set
up referenced to a single overall X, ¥, Z coordinate system. With this arrangement,
the gridpoint coordinates, loading vectors and gridpoint displacements are referenced
to the overall system, and the member stress resultants are referenced to either the
analyst's specified or computer-generated local coordinates. However, for some

problems it is convenient to use more than one set of overall coordinates. In these
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cases, use of several sets either reduces the amount of input data to be prepared or

simplifies the interpretation of computed results,

An interesting example which demonstrates the applicability of multiple
coordinate systems is the analysis of a pivotable antenna and mount (Fig, 3.16),
Assume that it is necessary to determine the static response or dynamic characteris-
tics of this configuration for several positions of the dish relative to the pedestal, If
a single coordinate system X, Y, Z is used to define the geometry of the dish and

pedestal, then the data must be regenerated for each position of the dish,

The alternate procedure is to first define the geometry of the pedestal with
respect to the X, Y, Z coordinate system and to define the geometry of the dish with
respect to the x, y, z coordinate system. Individual element and the system stiff-
ness, stress, and loading matrices are next generated by use of the SAMIS for each
structural component--in this case the pedestal and dish. Mathematically, the

dynamic equations for the two component systems are:

A2 [MP] {6p} - [KD] {SP} (3. 14)
2 [MD] {F)D} = [%p] {aD} (3.15)

At this point the two systems are referenced to different coordinate systems; hence,

the next step is to join them by matching displacements at common gridpoints --
gridpoints 1 and 2 in Fig, 3,16, Assume displacement components of the pedestal

at gridpoints 1 and 2 are aligned with the dish displacements as follows:

{6P1-2} - {6D1-2}

or, accounting for all displacements, we can write:

6 v | olls
e P12
6 0 I116
P3-n PB-N
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z Z
)
\</
¢ DISH
D
PEDESTAL ¥
ALY, 72

Fig. 3.16. Antenna and mount
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or

{6P} = 1) 81.;.1:.2. (3. 16)

The transformation matrix [T] is made up of a direction cosine matrix [Y] , which
may be repeated several times depending upon the number of common gridpoints
between the two systems, and a diagonal unit matrix needed to retain all remaining
displacement components of the pedestal, Imposing this transformation on

Eq. (3. 14) leads to

5L, 5L,
xZ[T]T[MP] (1] gpl_‘z - [T]T[KP] [T] %;2

3-N 3-N

By this transformation the codes of the displacement vector, mass matrix, and
stiffness matrix have been made compatible with those of the dish at the attachment
points. Hence, the mass and stiffness matrices of the two systems can be super-

imposed to define composite matrices for the entire structure.

It is apparent that all matrix operations required in the above manipulations
can be commanded by pseudo instructions if the matrix of direction cosines [Y] is

first computed and utilized to define the transformation matrix [T] .

The advantage of this scheme is that location of the dish relative to the pedestal
is controlled by the matrix of direction cosines. Hence, to change the orientation of
the dish requires only that [Y] be changed. This is a rather simple procedure com-
pared to the alternative of regenerating element input data for each geometric
configuration. Furthermore, the mode shapes of the dish will be defined with respect
to the dish-oriented coordinates x, y, z, and the pedestal dynamic characteristics
will be defined with respect to its natural coordinate system X, Y, Z (except for

gridpoints common with dish), which eases interpretation of the results.
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4.0 THE LINE ELEMENT, STATIC AND DYNAMIC PROBLEMS

4.1 Three-Dimensional Frame Structure

A three-dimensional frame structure, for which independent load and deflection
data are available from Ref. 8, was set up and analyzed with the SAMIS program to
check the program formulation of the line element. The structure is composed of

circular cross-section beam members. A set of hypothetical values for the cross-

sectional area (0. 001 in. 2'), shear areas (0. 003 in. 2), and moments of inertia

(0. 001 in.4) is assumed for each member. The structure is composed of 35 mem-

bers, which are arranged to form a nonsymmetric array. For the static problem, a
loading of 1000 1b at gridpoint 13 in the -Z direction is applied as shown in Fig. 4.1,
For this problem, gridpoint displacements, reaction forces, and member forces

were determined.

To check the calculation of modal properties of the structure, the [irst option
of the mass generation routine was used, which concentrates half the mass of each

element at the element gridpoints.

The static and dynamic results obtained from the SAMIS program were found

to be in complete agreement with results reported in Ref. 10.

Of interest here is the format of the element input data for a typical element
of the structure. Consider element 8, which extends from gridpoint 3 to gridpoint 5.
The three cards of element input data are shown in Fig. 4.2. It is assumed that this
data is for a dynamics problem, since card No. 2 is included, which provides only

the value of the mass per unit length of the element.

The output format for the beam problem is similar to the facet output. For
this problem the displacements of the gridpoints are referenced to the overall
coordinate system X, Y, Z. The stresses are referenced to each element's local

coordinates. The stress component identification is defined in Ref. 1, Table 5-4.

4,2 Planar Frame Structure, Prismatic Members

A three-member frame structure, in which each member has a rectangular
cross-section, was set up to check the program for correct generation of the
structural stiffness matrix. The structure is shown in Fig. 4. 3 with the overall
coordinates X, Y, Z and member local coordinates X.Y;i25 defined consistent with the

ordering of gridpoints in the element data. The total structure stiffness matrix was
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u

X

Fig. 4.1. Three-dimensional frame structure
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ELEMENT FIRST THIRD POLAR MOMENT OF MOMENT OF
No. GRIDPOINT GRIDPOINT MOMENT INERTIA INERTIA
No.—-¥ No.—-; OF INERTIA 7 ABOUT Z AXf7 ABOUT Y AXIi7
TREEEIRNEER 5| 28], 0.01 o0.001 0,003 , 0.001] 0. 003 0.001]20]
\—ELEMENT LSECOND L LSHEAR ZSHEAR /
CARD IDENTITY GRIDPOINT CROSS-SECTIONAL AREA AREA MATERIAL
No. (BEAM) No. AREA (FORCE IN (FORCE IN IDENTITY

Y DIRECTION)  Z DIRECTION)

—ELEMENT
No. (OPTIONAL)

(2I 8| lll 1 idl ) L ]2'159E_61 1 [ 1 1 1 1 i l [
XCARD ZMASS PER
No. UNIT LENGTH
ELEMENT FIRST SECOND SECOND THIRD OVERALL
No. GRIDPOINT GRIDPOINT GRIDPOINT GRIDPOINT COORD:
(OPTIONAL) Y COORD.—\ X COORD.\ z COORD.K\ Y COORD;—-\
ISIBIII ILO.OIl |0.0l| 0.0 I 0.0 l IO.LO| IXO.OIIO.OII 0.0 | 0.0 |¢’l
\'—CARD [‘—FIRST LFIRST Z-SECOND LTHIRD LTHIRD
No. GRIDPOINT GRIDPOINT GRIDPOINT GRIDPOINT GRIDPOINT
X COORD. Z COORD. Y COORD. X COORD. Z COORD.

Fig. 4.2. Sample element data for beam problem
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f’ ORIENTATION OF
} 2 memeer @
el VIEW FROM TOP 4
» X,
) e ___ @ 1732
i‘ ~21.0
v
Y MEMBER (2) z3 & } MEMBER (2)
X3 3
| — MEMBER @ MEMBER @ —a TYPICAL CROSS-SECTION
A
——I 1.0 '<—
" g L3
1.414 /—bz
\ S
Z| {
Ay = 1.414in?
e
- \l) A_.X Iz =0.236 in®
! I, =o.n8in?

V=l 41, = 0354 in®
LENGTH OF BEAMS = 20 in.

Fig. 4.3, Coordinates and geometry of planar three-member
frame structure
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generated by the program and compared with a hand-derived stiffness matrix. The

comparison between the two-was exact.

Of interest is the format of the element input data for this problem. In the
previous example of the three-dimensional frame structure, because the element
cross-sections are circular, the location of the gridpoint that defines the local x-y
plane of each element is arbitrary and may even be ignored. However, in the present
case, the location of the third gridpoint must be considered carefully; otherwise the
interpretation of the member stresses will be incorrect. For the three elements,
the element input data is that shown in Fig. 4.4. For member @ , the elastic
gridpoint numbers are & and A , which define the direction of the local
x axis. The third gridpoint, which is & , is used to define the local x-y plane
for this member, which is the X174 plane. The clamped end condition at gridpoint

A is specified by the sequence 999999 on card 2. For member @ the third
gridpoint is A which leads to definition of the X5, plane as the local plane. For
member @ , a local coordinate system, skewed with respect to the XYZ system,
is selected to align with the principal axes of the member cross-section. For this
member, the third gridpoint is AS& as shown in Fig. 4.2. The clamped condition
at gridpoint A is indicated by the sequence 999999 on card 2. Based upon these
definitions of the local axes, thc moment of inertia Izz is larger than IYy for each

element, and is so referenced in the element data.
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5.0 MISCELLANEOUS TOPICS

5.1 Automatic Matrix Partitioning and Applications

In most statics problems involving solution of the equation:

the applied loads are zero at many gridpoints. Partitioning on this basis, the above

equation can be put into the form:

Normal procedure in solving this equation is to determine the relationship between
{(51} and {62} from the lower set of equations, then substitute this result into the

upper set to obtain:

[Ku - K, K, Km]{él} = 1P}

or

[I_{]{él} = {P}

At this point [K ] is inverted to solve for the displacements {6” due to a specific
loading {P } . thatis:

{6} = RIREE [K“ - K, Kéé KZl]’l{P} (5.2)

It is noteworthy that if the stiffness matrix of Eq. (1) is inverted, the resultant
flexibility matrix has the matrix coefficient of Eq. (5.2) in the partition location

corresponding to K To demonstrate this, designate the flexibility matrix by [f] ;

11°
then by definition

] 2] (B ] Kz :[1 o] (5. 3)
150 | L2 (X | oz 011
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[f11] (%11 * [f21] [¥z1] = [ (5. 4)
(1] [Xi2) * (2] [%z2] = [0] (5.5)
[f12] [%11] * (52 [¥21] = (9 (5. 6)
[f12] [¥12] * [f22] [¥z2] = [1] (5.7)

Solving Eq. (5. 5) for [f12] and substituting into Eq. (5.4) leads to

-1 -1

[f11] = [Ku - K1, Kyl K21]

Similarly, it is found that:.

(21 = - [91] [%i2 Kéé]
[£22] = [Kzz - K K-lllKlz]-l
[f12] = - [f22] [K21 KI}]

Thus, the f11 partition of the flexibility matrix is exactly the coefficient matrix that

is required to be multiplied by the loading matrix.

Symbolically, if the stiffness matrix of Eq. (5. 1) is input as the [A] matrix,
and the loading matrix as the [B] matrix, then the following result is automatically

determined by use of the CHOL subprogram:

S B[]
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which is the desired result as defined by Eq. (5.2). Thus, by input of

and E—IZ—{ into CHOL, the desired output defined by Eq. (2) is obtained. It is to be

noted that if a unit diagonal matrix is input as the [B] matrix into CHOL along with any
matrix [A] of larger order than [B] , the output is automatically

[A“—l\ ala ]'l,inwhichAl

ABs5850 has the same dimension as [B] .

1
This capability can be used in numerous problems. Consider the dynamic

matrix equation in which the mass matrix is of lower order than the stiffness

6—1§
2

matrix:

The mass matrix is decomposed into:

[v] * [v) = [m]

[tz - [t 1
et = o] {e}
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The stiffness matrix is input to CHOL as the [A] matrix, and the

]

as the [B] matrix. The output of CHOL is:

1 [T
[KUIKIZ] E ]
K1 1Ko o lec

which is equivalent to:
-1 -1 T
[Kn'KlzK?.lKu] [U]

Thus, the dynamic equation automatically reduces to:

i, - kg, | e - D)

which is the desired form of the equation from which the eigenvalues and eigenvectors

are determined using ROOT,

In the event the stiffness matrix of Eq. (5.1) has a diagonal and upper off-
diagonal that exceed core, the matrix must be partitioned "manually' through the
use of additional pseudo instructions, A set of pseudo instructions that performs
this partitioning is given in Table 5-1. These 13 instructions operate on stiffness
matrix KTR001, which presumably has already been generated and constrained.

Description of each pseudo instruction follows:

14. 00 READ: Transfer from the data input tape to tape 12, locations
001 and 002, the two matrices WARO001 and WARO002,

respectively.
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Table 5-1.
12001 WAROQO1
12001 WARQO1l
12001 WARO0O01
11002 wFCO0O01
13001 WwFROO1
10001 KwWRO00}
11002 KLROO1
11003 KLC001
12002 WARO0O2
13001 KBROO1
11004 KUROO1
10001 KICO001
13002 KAROO1

Pseudo instructions for matrix partitioning

12002
11001

10001
13002

11001
11003
12001

10002

WAROOQ?2
KTR0O1

KWROO1
KAROO!

KTROO1
KLCOO01
KDCO001

KIR0OO1

108

READ
WASH
FLIP
ROWS
WASH
SUBS
coLsS
FLIP
WASH
CHOL
MULT
ROWS
SUBS

10001
11002
13001
13002
11002
11003
11004
13001
12001
10001
10002
11002

KwWR0O01
WFC001}
WFROO1
KARO0O1
KLROO1
KLC001
KURO0O1
KBROO1
KDCO001
KI1C001
KIRQO1
KPCoo01
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14. 05 WASH:

14. 10 FLIP )
14. 15 ROWS |

14. 20 WASH:

Extract certain rows and columns from the stiffness
matrix KTR001 by special pre- and postmultiplication.
Store the partition of KTR0O1 on tape 10, location 001,
The explicit operation is:

Starting with the complete stiffness matrix

[K] _ KlllKlZ

KZl KZZ

K

the left column partition K
of WASH, option 2 (as indicated in E field). The

matrix WARO00]1 has column codes that match

11] is isolated by use
21

those of Kll and row codes that are different from
any codes used in K. Elements equal unity in
WARO001. Note that since rows and columns of
[K] are prescribed by element codes, the
selection of the row or column codes of [Kll]

and [K22] is dependent only upon the element
codes used in the WASH matrix. To minimize
computer time, general practice should be to
select strongly coupled elements for [Kll] and

lightly coupled elements for [K With this

22)
arrangement [KZZ] is efficiently inverted in

. -1 . -

forming [KII-KIZKZZKZI] Since [K12] [KZZ]
[KZI] will be a full matrix, the fact that [Kl 1]
is also full, is of little consequence.

Row-list the transpose of the WASH matrix.

K
Extract the [K ] matrix from the 1 partition by
11 KIZ
special pre- and postmultiplication with the matrix

WFRO00O1., Title the [Kll] matrix KAROO1l and store it
on tape 13, location 002,

109
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K
) 11 . .
14. 25 SUBS: Subtract [K“] from l:K21] to obtain [KZl]' This
matrix is titled KLROOl and is stored on tape 11,
location 002.
i;} gg gg%s: Convert [KZI] to [KIZJ' Designate [K1z] KURO001
' and store on tape 11, location 004.

14. 40 WASH: Extract the [K partition from the total [K] matrix

by special pre-Ziilld postmultiplication., Matrix WARO002

has row and column codes that match those of [K22]

and clement values of unity. Option 2 of WASH

is used. Matrix [KZZ] is designated KBROOI and is

stored on tape 13, location 001.
14.45 CHOL: Form the matrix produce [KZZ] B

of [KZZJ (KBROO1) and [KZI:I (KLCO001). Designate

the resultant matrix KDC001 and store on tape 12,

! [K.Zl] from input

location 001.

. -1
14. 50 MULT: Multiply together [KIZ] (KURO(-)i) and [KZZ] [KZI]
(KDCO001) to form [K12] [KZZ] [K21] (KICO001).
14. 55 ROWS: Row-list the matrix KIC001 and title the new matrix
KIRO001. It is stored on tape 10, location 002.
. . -1 .
14. 60 SUBS: By subtraction form [Kll - KlZ KZZ KZI] . This

matrix is titled KPC00l and is stored on tape 11,
location 002. Except for degenerate cases this matrix

is a full matrix.

These pseudo instructions are an example set suitable for insertion into a
pseudo instruction program. They would necessarily have to be modified,

particularily in tape assignments, upon insertion into a program set.

Another use of the partitioning capability can be demonstrated by consldering
the problem of a stiffened cylinder subjected to a transverse normal load as shown in
Fig. 5.1. Because of symmetry, only one-half of the cylinder cross-section needs
to be idealized and analyzed. However, even with this reduction, if one-half of the
cylinder is idealized by a network of triangular elements as shown in Section C, it is
apparent that the total structural stiffness matrix would greatly exceed the
computational capacity of the SAMIS. However, partitioning this structure and
solving a lower-order matrix equation, can be used to retain the effect of a fine grid

array.
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Fig. 5.1. Stiffened cylinder
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The procedure centers on first analyzing each section of the total cylinder.
Consider Section A as having been idealized by an array of triangular plate elements
and a number of beam elements that represent the ring stiffener. The stiffness

matrix for Section A is generated using SAMIS, which takes the form:
[¥ad {oal = {Fal

At this stage, gridpoints in Section A which border on Section B or the clamped edge,

and gridpoints at which deflections are to be computed or forces are to be applied,

(1)

are separated and designated as 6A . All remaining displacement components are
designated 622')‘ Thus the matrix equation partitions into
11 12 (1) P
By [Ka | Joa | [Pal (5-8)
Kal.Kaa ) ]o | }
A 17A °A

In actual manipulations, the matrix KA and a unit diagonal matrix of the same
dimension and coding as the rows of l 6;”] are input to CHOL as the [A] and [B]

matrices, respectively. The output of CHOL 1s:

o
ool 22 227t 2
[fa] - [KA - Ky Ky KA]

This matrix is next inverted and designated [RA]' Thus, we have

[Ka] 36(A1)(’ = {Pal

(1)
A
is repeated for all remaining sections of the cylinder, until finally four stiffness

where [}—{A] is, in general, a solid matrix of the same order as § This process

matrices have been determined that have the following interpretation:

R RONIENEN
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[(¥p] 3ég)£ = {Fp}

These matrix equations are superimposed to obtain a representation of the entire

structure, i.e.:

=it

Xl

B (Vb - ip)

|

=i

[Ks] R B (5.9)

If precautions have been taken to control the dimension of {6(1)} , then the final
stiffness matirx [KS] will still fit in core or the matrix size will have been reduced
such that a single partitioning of the equation is all that is required to solve for the
{6 (1)} in terms of specified applied loads {P } The only restriction on this
procedure is that in the initial solution of the problem only the displacements {6(1)}
are determined. If the remaining structural displacements are needed, then
supplemental manipulations with the individual section equations, e.g., Equation (8),

are necessary.

5.2 The Node Discontinuity Concept

Computational ability to account for displacement discontinuity at the joints of
adjoining finite elements is very easily effected in the SAMIS. Consider the beam

element, which has a stiffness matrix of order 12 when the beam is arbitrarily
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oriented in three-dimensional space. Six of the variables are referenced to each of

its gridpoints. For gridpoints designated i and j the stiffness matrix for element k is

of the form

il i6 jl 6
. r | ]
11
| g1 kB
i1 | 1j
i6 | __
J1 |
| kb k(D)
i i
i | |

up of two clements, leads to the following matrix equation
f — — — — — — - . 3 ]
|
| “! Y11 Pl
| : | 12 P12
P
| k(! i k(! : 413 13
| | | 014 Mg
l | | 615 s
{ | | o6 | ™16
___________________ —
| | | | Y21 P
| : | 11|22 | P
| (1) (1) (2) (2) u =P,
23
| K1 | Koz TR K | ] 23 o
| | l | | | 924 24
| ‘ | | | | %5 ™25
l_ N R B Y ™26
P
| | | 1 | "1 41
| | BT Py2
I k(%) S || Y43 Pa3
: | || | %44 M4
| l I 645 m45
i | 0 m
4
L - - _ N I | 46 L 6'
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(a) CONTINUOUS BEAM KELEMENT 2
I —» x
’/ﬂl Xz 2
Y ¥V ELEMENT |

V4

(b) DISCONTINUOUS BEAM ELEMENT 2

N
n @) — X
T A
ELEMENT |

v
z

\M
(2)—7 v(l)
_QG —QQ

Fig. 5.2. Two-member beam
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Note that at gridpoint 2 the two-element stiffness matrices combine, resulting in
only six independent variables at this gridpoint. Hence, in going from element 1 to

element 2, across joint 1, continuity of displacements is maintained.

Consider now the case when joint 2 is a hinge connection with a single axis of
rotation along the y axis. The twelve displacement variables at gridpoints 1 and 4
and five of the displacement variables at gridpoint 2 are unaffected by this structural
modification. However, the slope at gridpoint 2 is now discontinuous, having a value
e(ylz) on the element 1 side of the joint and a value G(YZZ) on the element 2 side of the
joint. Hence, instead of eighteen displacement variables, we now have nineteen, and

superpositioning of the stiffness matrices must yield a matrix equation of the form

r c s \
X
—\ “11W P
u, 5 P,
u P
14 Mg
995 Mg
01¢ myg
Y21 P
(1) kD) (2) D g(2) «(2) t22 P22
21 22 22 22 22 24 u P
23 23
0,4 m24L
jez()}:ﬁm%
(1) (1) (1) (1)
K31 K>, 0 25 Mo
(2) (2) (2) (2)
0 K22 K4 025 ms
Y41 P
Y42 Py
u P
44 44
945 Mys
0 m
46 46
L — 7 L J
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It should be noted that not only has a new displacement variable been generated, but
also the corresponding force variable has been split into two independent variables

at the joint.

Thus, if a moment MY is applied at joint 2, the user must determine

the fraction of this moment that is applied to each member.

In the SAMIS, the mechanism for identifying additional variables when discon-
tinuities are present is by incrementing the gridpoint number of one of the elements

during the generation of the stiffness matrices. Thus, in the present example, if

the discontinuity condition is flagged in the element data of element 1, the coding of

(1)

the variable eyz would change, but the coding of GY(ZZ) would not. Since the grid-

point number 3 has not been assigned, the coding could be: Gy(l) 35 and
2
ey(z)———»ZS; thus, the element stiffness matrices become:
2

11 121314 1516 21 22 23 24 26 35 21 22 23 24 25 26 41 42 43 44 45 46

11 21

12 22

13 (1) (1) 23 (2) (2)
14 K11 K12 24 K52 K54
15 25

16 and 26

21 1

22 42

23 (1) (1) 43 (2) (2)
24 Ko K52 44 Ky2 K4
26 45

35| N 46 | |

Superposition of these matrices then yields the necessary nineteen degrees of

freedom.

The node discontinuity capability in SAMIS has been used in the analysis of
a solar panel structure. The actual panel was constructed of corrugated sheet,
with a second facing sheet to which solar cells were mounted.
5. 3).

In the idealization,

Two large beams
support the panel and attach to adjacent structure (see Fig. This design
was idealized by three planes of beam elements. the corru-
gations were lumped into equivalent beams lying transverse to the support beams,
The facing sheet was idealized by criss-cross beams that modeled the in-plane
stiffness of the sheet. The discontinuity conditions arose because of the extreme
shear flexibility of the corrugation resulting in displacement discontinuity

in the facing sheet.

between gridpoints in the support beams and gridpoints

This discontinuity was accounted for in the following manner., Gridpoints
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CORRUGATION
|1———— 36 in——% :

TTT T I T T T I ITITITIL L

50Qin.
Y
\LX/L -
SUPPORT BEAMS CELL SURFACE
Fig. 5.3. Sketch of solar panel
SUPPORT CORRUGATION
BEAM
, FACING
SHEET
ELASTIC
GRIDPOINT
/,@6
IGI
]
\A%\\
SUPPORT
RIGID ARM
BEAM ELASTIC IDEALIZATION OF

GRIDPOINT x SUBSTITUTE NODE

Fig. 5.4. Definition of substitute node
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on the facing sheet were transferred to corresponding elastic gridpoint locations on
the support beam. FPhysically this is equivalent to assuming a rigid massless arm
attached to the facing sheet and gridpoint forces acting at the substitute gridpoint.
The elastic gridpoints (4 and 6) and a substitute gridpoint (6') are shown in Fig. 5.4,
All displacement components at gridpoints 6 and 6' are coded identically, except

the axial displacement (along x axis). For this component the discontinuity condition
was used in which the support beam retained the 61 designation; however, the substi-
tute node 6' was designated 51. To complete the idealization, a stiffness matrix

representing a linear spring was input which had the form:;
51 61
51 [ k -k]
61 Tk K
The stiffness coefficient k was sized to represent the stiffness of the tributary

corrugations in shear.

119



JPL Technical Memorandum 33-305

ACKNOWLEDGMENT
The theoretical and numerical work performed by Prof. H. E. Williams to

provide closed form solutions for the shallow shell loading problems is gratefully

acknowledged.

120




10.

11.

12,

JPL Technical Memorandum 33-305

REFERENCES

Melosh, R. J., Diether, P, A., and Brennan, M., Structural Analysis and
Matrix Interpretative System (SAMIS) Program Report, Technical Memo-
randum 307, Jet Propulsion Laboratory, Pasadena, California, September 1,

1966.

Melosh, R. J., and Christiansen, H, N., Structural Analysis and Matrix Inter-
pretative System (SAMIS) Technical Report, Technical Memorandum 311, Jet
Propulsion Laboratory, Pasadena, California, November 1, 1966.

Timoshenko, S., Theory of Plates and Shells, 2nd ed., ch. 16, McGraw-Hill
Book Co., New York, 1959,

Sepetoski, W. K., et al, '"A Digital Computer Program for the General Axially
Symmetric Thin-Shell Problem, ' ASME paper No. 62-WA-31, November 25,
1962.

Utku, Senol, Computation of Stresses in Triangular Finite Elements, Technical
Report 32-948, Jet Propulsion Laboratory, Pasadena, California, July 1, 1966.

Johnson, M. W., and Reissner, E., "On Transverse Vibrations of Shallow
Spherical Shells, ' Quarterly of Applied Mathematics, Vol. 15, 1958, pp. 367-
380.

Hurty, W. C., Dynamic Analysis of Structural Systems by Component Mode
Synthesis, Technical Report 32-530, Jet Propulsion Laboratory, Pasadena,
California, January 15, 1964.

Bamford, R. M., Modal Combination Program, Technical Memorandum
33-290, Jet Propulsion Laboratory, Pasadena, California, August 15, 1966,

Denke, P. H., A Computerized Static and Dynamic Aircraft Structural Analysis
System—Engineering Aspects and Mathematical Formulation of the Problem,
Paper 3213, Douglas Aircraft Co., Long Beach, California.

Wada, B. K., Stiffness Matrix Structural Analysis, Technical Report 32-774,
Jet Propulsion Laboratory, Pasadena, California, October 31, 1965.

Williams, H. E., Influence Coefficients of Shallow Spherical Shells, Technical
Report 32-51, Jet Propulsion Liaboratory, Pasadena, California, February 12,
1961,

Williams, H. E., JPL internal document.

121




JPL Technical Memorandum 33-305

APPENDIX A. Transformation of Orthogonal Vectors

Equations are derived for transforming a set of vectors in spherical coordinates

to a set in rectangular coordinates. The notation and sign convention are shown in

Fig. A-1.

In Fig. A-1, the vectors gé’ ?e, €¢ are unit vectors tangent to the respective

coordinate lines. The unit vectors E‘X, ey’ é'z, are, as shown, in the rectangular

system.

The unit vector éz can be found in terms of the rectangular system as follows:

xe. + ye. + ze.
X y z

\/x2 + yz + z2

N

N4

where, from Fig. A-1,

x = a sin ¢ cos 6

a sin ¢ sin 6

<
I

z = a cos 9
substituting these quantities into the expression for Eé yields

ey = 51ncbcoseex+sm ¢ sin © ey_+cos<i(>eZ (A-1)

The unit vector Eq) can be found by differentiation

QO
ol

[Ty

3]
©

ep =

@
®
~

|

Q
-
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Fig. A-1. Sign convention and nomenclature
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or,

E:b:cosd)cose €X+Cos¢ sin @ E;r-sind:'é; (A-2)

Similarly, _t;e is given by

8¢ — —
. ?0% _-sincb sin 6 ex+sind> cos B €y
e = — =
0 aeé
or,
eg = - sin 6 e + cos © ey (A-3)
Now, the set of vectors
S v e Uy =y €y o= ©
S S 4 d" ¢ "6 Yo g ¢

can be transformed into the xyz system by use of the unit vector relations, namely

IS L’J?;( sin ¢ cos 6 e _+ sind sin® ey+ cosd e ) (A-4)
Jd): qd)(cosq) cos © €;+cos¢>sin9 €;f-sin¢ 6; ) (A-5)
_Q_ézkpe(-sinee_;{chosee_;) (A-6)

Let the vectors in the xyz system be denoted by
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These vectors can now be written in terms of the vectors Ei by summing the

appropriate components in Eq. (A-4) - (A-6). Thus,

p——y

gx = (","§ sin ¢ cos 6 +¢¢ cos ¢ cos 6 - lJJesin 0) _éx

—

§Y = (Lpé sin ¢ sin 6 + 4J¢ cos ¢ sin 6 + Lbe cos 0) -éy

EZ = (LLgé cos ¢ - LP¢ sin ¢) gz

from which the inverse relations are obtained

—q:é: (gx sin ¢ cos O + gy sin ¢ sin 6 + F,Z cos ¢) zg

—_—

lpd): (gx cos ¢ cos O + §Y cos ¢ sin @ - §z sin ¢) _<;¢

4‘6 = (-§X sin 6 + §y cos 6) o
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APPENDIX B. Solution of Thermal Loading Problems

Calculation of temperature-induced displacements and stresses involves
superposition of two linear loading states. One state consists of fixing all other-
wise moveable gridpoints of the structure, then imposing the temperature
conditions that induce loading. Formulation of this statc yields gridpoint reaction
forces that maintain the zero displacement constraint. These gridpoint forces are

commonly referred to as ''fixed-node forces."

The second loading state is the application of the fixed-node forces with
reversed sense at the structural gridpoints. For this loading only the actual displace-
ment constraints are imposed (boundary conditions), and deformation of all other

gridpoints is computed.

Superposition of the displacements, stresses, and gridpoint forces from the two
states is the solution of the thermal loading problem. Obviously, superposition of
the two states results in zero net external forces acting at all unconstrained grid-
points, as should be the case. Actual deformation of the structure is defined by the
displacements computed from the loading in the second state. For stresses, numer-
ical results from both loading states must be considered. Actual member stresses
are the difference between the values computed based upon the displacements of the

second loading state. and the values corresponding to the fixed-node loading.

In using the SAMIS program to solve thermal loading protlems, most of the
essential data is determined internal to the program. For example, the vector of
fixed-node forces is simply the vector resulting from overlay (ADDS) of the individ-
ual loading vectors generated by BILD. By subjecting the analytic structural model
to this loading (solution by CHOL) the temperature-induced displacements are

obtained.

The element stresses that result from the fixed-node loading state are also
computed internal to SAMIS. These values are stored as column 05 in each element
stress matrix whenever these matrices are generated in a thermal loads problem.

Thus, for a thermal problem, the element stress matrix has the following format:
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Codes corresponding to element
stiffness matrix codes

r -

o
(S

Stress component
codes

Fixed-node stresses

L |

For other than a thermal loading problem, column 05 does not appear in the matrix
([s1=[3D.
The usual procedure with SAMIS in computing element stresses is to form the

product

{s} = [5] {o}
where {6} is the vector of displacements for the entire structure, but because multi-
plication in SAMIS is by code matching, only those elements of {6} are selected that
correspond with those of each [§] In a thermal stress problem the product [§] {6}
yields the stresses corresponding to the second loading state--from which the fixed-

node stresses must still be subtracted to obtain the actual stresses.

Because of the code matching technique employed in SAMIS, computation of the
actual thermal stresses is very easily effected. The displacement vector {6} result-
ing from a thermal loading problem has the column code 05 and row codes corres-

ponding to the gridpoint displacement components. The format is:

05

0 N
o]
o
el
a
0
o,
¢,
)
H‘a®3< 6 >—
H--—cEg
00 by
UQ-«‘DQ

< Y35
0.~ «
QO B &
g BB E

i O
OBPUUKJ
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To this vector an element is added that has the row code 05, column code 05 and

element value -1.0. This changes the format of { 5 } to:

05
n
2 ()
o)y}
g 5
-
g8 ©
wn (@]
o B ¢ = {5}
HQO
O--—qE
[ONNe]
&8
R
< op &
o ..Z
08w |
05 \—1.0/

If this vector is used to form the product [5] { & }, the fixed-node stresses will auto-
matically be subtracted from the stresses of state 2 to obtain the actual stresses in

each member.

Addition of the element with codes 05, 05 and value -1.0 to the displacement
vector due to thermal loading is a standard procedure with SAMIS and must be exe-
cuted by use of pseudo instructions in all thermal stress problems if accurate stres-

ses are to be computed.
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APPENDIX C. Closed Form Solutions for the Static Loaded Shallow Spherical Shell

Constant Pressure Loading of a Restrained

Shallow Spherical Shell

Following the notation and results of Ref. 11 the solution to the problem of the
uniformly loaded, restrained spherical shell (Fig. C.1) follows directly once the
constants of integration Cl’ C2 have been determined. Requiring that the meridianal

rotation (V) and the horizontal edge displacement () vanish at the edge leads to

~ 2 1-v . [ ber'u v . bei'p
C = 2 C = + v
1 = 2p Cyfpa” = 15 ( m 02 n )
~ 2 l-v | [bei'n 1% ber'u>
= 2 C = e
) p Cp/pa a(p) ( M p2 M
where
ber!' bei' ber' 2 bei' 2
a(p) = beip'—pli-berp-—ﬁ—ﬂ—+(l+v)' _HE) + —-p-ﬁ>
v bei'n ber'pn
+———-p2 (bel 8 T + ber m )
and
EahV/p% = C. - (-bei'x + £ - ber'x) + C, + (ber'x + 2 * bei'x)
1 pl 2 p2
. 2 1ty . .
Ehé/siné = - (1-v)pa /2 + pCy » \5— © ber'x + beix
C -(1+"- bei'x - be )
+p 2 - el'x - r X
and
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e

Fig. C.1l. Shell geometry and displacements

150°F

Fig. C.2. Shell temperature state
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The remaining quantities of interest follow as

_ ~ . ber'x ~  bei'x
-2N¢/pa =1+ C — TG =
~ . ber'x ~ bei'x
-ZNe/Pa=1-C1 (be1x+ " >+Cz' (berx- p )

ZPQ¢/pa = El ber'x + EZ * bei'x

2 2 >~ v ) bei'x v ber'x
Pt . v ber's . v  Dbei'x
+C2-[be1x-ﬁ berx+(l_v).(_x_+p_2. - )]
~ 1
ZPZMe/‘paZ - C [v (ber x+L7 bei x) ¥ (1-v) (be1 X _v’7 ) be-r- x“
1 L A p_' \ p:& pu o~ /]
~ 1
+ C v (be1x-_v_. berx)-(l-v) ber'x v bei'x
2 p2 x pZ x
Eh _ . l+v |
- (6V + Vo) = (NG - vN¢) cosd - s Q¢

The constant v, can be chosen so that the vertical displacement 6V vanishes at the

edge x =P . The sign convention for the displacements is shown on Fig. C. 1.

Thermal Stresses/Displacements in a Fully Restrained Shallow Spherical Shell

The stresses/displacements in a shallow spherical shell that is heated are
taken to be those given by a particular solution of the heated shell on which is
superposed a solution for a cold shell. The total solution is required to satisfy

the fully restrained boundary rondition. The loading is indicated in Fig. C.2.
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The particular solution for the heated shell follows from Ref. 12 for a linearly

varying temperature distribution through the thickness that is constant otherwise

(Fig. C.2), assume

® = TO + C,Tl; To’ Tl - const.

Temperature above ambient (strain free)

It follows that

2
TSl GRS SV U
0 t "o 24a T-v T
2
b L 2P |
t "o 24a 1- v
Vg = 0
M,, M. = (14v) - @, DT D:Eh3/12(1-v2)
¢ o t 1’
Ng» Ng» Q¢ = 0

The solution for the cold shell is obtained from Ref. 11 once the constants Cl’ C2

are determined to satisfy the boundary conditions that

€

o (=M |co1a ~ T

Vi(x = p)

I}
o
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with
Eah = Cl . (beix-l— 1ty . ber'x)
P cold X
+ C2 (-ber x + %} . bei'x)
Ea?h .V = C1 . (-bei'x + -V? . ber‘x)
p p

2

+ C2 . (ber'x+v— . bei‘x)
p

For the cold shell, it follows that

c Eahe,T, [ Thoawr!n v he ll“' \
_ i odinlonBS et T S e
1 pa(p) \ M pZ P )
C _ EahE (bel - L . ber 53 )
2 pa(p) # 2 "

The total solution is then given by

- _P . ) ber'x . bei'x
N - & o, bex, . beix)

:% (C ber'x + C belx)
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th) 3
_ _pb v :
) = (1+v) athT1+ 5 ;Cl [berx+ 5 bei x
Ea P
bei'x v ber'x . v
- (1-v) ( — -3 - >W+CZ Ibelx———z- ber x
p P
£ (1-v) (ber’x +_L2 . bei'x)} g
x x
p
hMe/D:(l+v) atth
93 bei! ber'
+ — c. v (berx+—beix +(1—v)< erx erx)
E 1 2 x 2 x
a p p
. ber' bei'
+C2 [v (belx——z berx)—(l—v)( erx+_v2_ e;x)]%
Y p
_ . . P . 1+v \
5 = a sin & 3€T+—Eah [Cl (belx+ ” berx>
+ C (—ber x + 1tv . bei'x)]%
2 b'e
1+v aQ

= . 2 . - . v ¢
b, % VvV, T acq cos ¢ + o <N6 VN‘b) cos ¢ ER  Siné

The constant (VO) can be chosen so that b, (x = p) = 0.
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Appendix D. Input Data for Shallow Spherical Shell, Static Load Problem

A, Pseudo Instructions

1.0 09001 KAROO1 10001 §SR0O0O1 BILD 11001 TLCOO1 -~10800
2,0 09001 KAROO1 ADDS 13001 KKR0OO1 10800
3.0 11001 TLCO01 ADDS 13002 TSC001 10800
4,0 09001 VTCOO1 READ
540 09001 VTCO001 FLIP 11001 VFROO1
640 11001 VFROO01 13002 TSC001 MULT 09002 LTCOO01
740 13001 KKRO0O1 09001 VTC001 MULT 12001 KPROO1
840 12001 KPROO1 coLs 09003 KPCO0O1
9,0 11001 VFROO1 9003 KPCOO1 MULT 12001 KKCO001
1040 12001 KKCO0O01 ROWS 13001 KKROO1
11.0 9002 LTCO001 coLsS 13002 TSCO001
1240 WAR0O01 READ
13.0 WAR00] 13001 KKROO1 WASH 11001 KwR0O1
1440 11001 KWR0O1 13002 TsC001 CHOL 12001 DICO01
1540 09001 VTCO01 ROWS VTROO1
1640 VTROO1 12001 DICOO1 MULT 09004 DACOO1
17.0 09004 DACO001 COLS 12001 DICOO01
18,0 12001 DICO01 INKS 1
1940 13001 KKROO1 12001 DICO01 MULT 11001 RFCO001
20,0 11001 RFCO01 INKS 1
21.0 ' ATCOO01 READ
22.0 ATC001 12001 DICOO1 ADDS PTCO01
23.0 10001 $SROO1 DTCO01 MULT 11001 SACO001 10800
2440 11001 SAC001 INKS 10800
2540 HALT
B, Material Table
201476 530s 12¢5E~6 1640E+6 B84.0E+6 16+.0E+6 0 0 44.0E+6
8.0F+6 B8.0E+6 16s0F+6 440E+6 440E+6
135




N~ O N orvhlorvhlOHJH\ON)H\OhJH\ON)H\ONJH\OhJH\OAJH\oan\ON)H~O\)H-ON)H\0h)H~Oh)H~on3-on:-on)~

13
14

14
15

15
16

16
17

17
18

18
19

19
20

31

31

31

31

31

o1

31

31

31

31

31

31

31

31

31

31

31

31

31
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2 3
1e¢3592

3 2
1627720046487

2 5
163592

3 4
1627720646487

) 6
248554

7 3
443437

6 5
268320697660

8 9
442777075428

10 11
548200

8 7
442777075428

11 12
5479780450727

12 113
54731610106

9 8
400817144856

13 14
56217145063

11 10
579780450727

15 16
607981

12 11
5¢73161.0106

16 17
6e75210,78919

13 12

56217165063
17 18

C.

1

284468
4

28468
4

284468
6

284468
4

284357
5

284167
8

284357
6

284167
7

274900
11

284167
8

27.900
8

274900
13

284167
9

274900
15

27900
11

27677
16

27900
12

276677
17

27900
13

Element Data
50
1e27720e46487
50
13592
50
28554
50
1492500433950
50
2668320697660
50
4e27770675428
50
248554
50
440817144856
50
57978050727
50
463437
50
567316140106
50
5662171645063
50
427770675428
50
56469019906
50
58200
50
667521078919
50
5679780450727
50
6e6148145678
50

5¢73161.0106

50
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530 150 100
284468
530 150 100
28468 1492540033950
530 150 100
284357 192540433950
530 150 100
284430 24683 097660
530 150 100
284357 19254033950
530 150 100
284167 248554
530 150 100
28357 442777075428
530 150 100
28170 2468320497660
530 150 100
27900 43437
530 150 100
28¢167 579780450727
530 150 100
274900 4427770475428
530 150 100
27900 4427770675428
530 150 100
2Be167 5621715063
530 150 100
27900 400817164856
530 150 100
27900 607981
530 150 100
27677 567978050727
530 150 100
27900 6475210478919
530 150 100
27677 56731610106
530 150 100
27900 6614815678

530 150 100

«075 20

2845 0]
«075 20

28433 O
«075 20

284433 O
«075 20

284357 O
«075 20

284433 0
«075 20

284357 O
«075 20

284167 O
«075 20

284357 O
+075 20

284167 O
«075 20

274900 O
«075 20

284167 O
«075 20

284167 O
«075 20

27500 O
«075 20

280167 O
«075 20

274677 O
«075 20

27500 O
«075 20

274677 O
«075 20

274900 O
«075 20

27677 O
«075 20
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20
21

21
22

2?
23

23
24

24
25

25
26

26
27

27
28

28
29

29
30
21

31
32

32
33

33
34

34
25

35
36

36
37

37
38

38
39

39
40

31

31

3

31

31

31

31

31

31

31

31

31

31

31

31

31

31

31

31

31
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6.6148145678
14 13

5469019906
19 20

77600
16 15

67521078919
20 21

TeT4690445117
21 22

7¢70750490086
17 16

666148145678
22 23

Te64211e3475
23 24

7¢5508147896
18 17

63881243251
24 25

Te4340242256
26 27

8.2453
20 19

Te74650e45117
27 28

8624180423977
21 20

7470750490086
28 29

8,21390.71866
22 21

Teb4211e3475
29 30

841582141950
23 22

745508147896
30 31

840750146674
24 23

274677
18

27900
15

27423
20

27677
16

274423
16

276423
22

274677
17

276423
17

27423
24

27677
18

27423
16

27281
27

27423
20

27.281
28

27423
21

274281
29

27423
22

274281
30

27e423
23

27.281
31

63881243251

50
506217145063

50
Te74690e45117

50
607981

50
7470750490086

50
Teb64211e3475

50
675210478919

50
75508147896

50
Te4340242256

50
666148145678

50
742920246541

50
8e24180,23977

50
Te7600

50
8¢21390.71866

50
Te74690445117

50
84158211950

50
7470750490086

50
840750146674

50
Te64211e3475

50
769644241340

137

274677

530
27900

530
27423

530
276677

530
274423

530
276423

530
27677

530
27423

530
27423

520
27677

530
276423

530
27281

530
27¢423

530
274281

530
27423

530
27.281

530
27423

530
274281

530
27¢423

530
274281

56621715063

150 100
63881263251

150 100
67981

150 100
TeT74690e45117

150 100
6¢75210478919

150 100
67521078919

150 100
Teb6421163475

150 100
6614815678

150 100
60614815678

1680

PRV,

10
Te43402e2256

0
150 100
643881243251

150 100
T«7600

150 100
824180023977

150 100
TeT4690e45117

150 100
821390471866

150 100
7470750490086

150 100
801582141950

150 100
Te64211e3475

150 100
B407501e6674

150 100
7¢5508147896

27900 O
«075 20

27677 O
«075 20

27677 O
«07% 20

27423 0
«075 20

27677 O
«075 20

27677 O
«075 20

27423 O
«075 20

27677 O
«075 20

27677 O
«075 20

27423 O
«075 20

27677 O
«075 20

274423 O
e075 20

27281 O
«075 20

27423 0O
«075 20

27281 O
«075 20

27423 0
«075 20

27281 O
«075 20

27423 0
«075 20

27.281 O
«075 20

27423 O
«075 20
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4C
41

41
42

42
43

43
44

44
45

45
46

46
47

47
48
48
49

51
52

52
53

53
54

54
55

55
56

56
57

57
58

58
59

59

31

31

31

31

31

31

31

31

31

31

31

31

31

31

31

31

31

31

31
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Te4340242256
31 32

T7e96442¢1340
25 24

7292026541
32 33

78268245935
27 26

Be24180e23977
34 35

8.7201
28 27

842139071866
35 36

o BNz
Ve3VD

54
29

8470

N O
™ O

841582141950
36 37

84.66121.0123
30 29

840750146674
37 38

845876165142
31 30

79644241340
38 39

8448502.0110
32 31

76826825935
39 40

843538245009
33 32

Te7480248201
41 42

9¢1924
35 34

870540,50699
42 43

919010626736

27423
24

274281
32

27423
25

27281
34

274281
27

274133
35

27.281
28

-~d

N

W W
oW

27.281
29

274133
37

274281
3C

274133
38

27.281
31

27133
39

27.281
32

274133
40

274281
34

26977
42

27133
35

26977

50
75508147896

50
78268245935

50
Tel340242256

50
77480248201

50
Be2453

50
Be70540450699

50

8424180423977
50

0123

o _ ££1921% 1
OsVODI1Cc 1 e 1

50
B8421390.,71866

50
8e5876145142

50
8¢1582141950

50
844850240110

50
840750146674

50
843538245009

50
79644241340

50
841942249824

50
T¢8268245935

50
9619010426736

50
847201

50
9415900480135

138

530
27423

530
27281

530
274273

530
274281

530
274281

530
27133

530
274281

=
w W
w o

o
~

530
27281

530
274133

530
27281

530
274133

530
274281

530
274133

530
27281

530
27133

530
274281

530
26977

530
274133

530
26977

150 100
709644241340
150 100
74434022256
150 100
748268245935
150 100
702920246541
150 100
847201
150 100
8024180023977
150 100
8470540450699
150 100
8.21390.71866
150 100
846612140123
150 100
841582141950
150 100
8e58761e5142
150 100
8+0750146674
150 100
844850240110
150 100
709644201340
150 100
Be3538245009
150 100
748268245935
150 100
Be1942249824
150 100
847201
150 100
9419010426736
150 100
8470540450699

27281 O
«075 20

27423 O
«075 20

27.281 O
«075 20

27423 O
«075 20

27133 0O
«075 20

27281 O
«075 20

27133 O
«075 20

27,281 O

F8£C a

«075 20

274133 0
«075 20

274281 O
«075 20

27133 O
«075 20

274281 O
«075 20

27133 O
«075 20

27281 O
«075 20

274133 O
«075 20

27.281 O
«075 20

274133 O
«075 20

274133 O
«075 20

26977 O
«075 20

27133 O
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60

60
61

62
63

63
64

64
65

65
66

66
67

67
68

68
69

69
70
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36 35

846612140123
43 44

9.15900,80135
37 36

845876165142
44 45

940969143325
38 37

844850240110
45 46

90041148592
39 38

843538245009
46 47

848808243796
40 39

8e1942249824
47 48

847273248919
42 41

9.19010,26736
49 50

9.6618
43 42

915900480135
50 51

964550456174
44 43

9.09691,3325
51 52

9.596514,1216
45 44

90041148592
52 53

94515016778
46 45

848808243796
53 54

43

274133
36

264977
44

274133
37

264977
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27133
38

264977
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274133
39

264977
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274133
40

264977
49

264977
42

264812
50

266977
43

264812
51

264977
44

264812
52

266977
45

264812
53

264977
46

50
8470540450699

50
940969143325

50
8466121,0123

50
940041148592

50
8e58761e5142

50
848808243796

50
844850240110

50
847273248919

50
8435382.5009

50
846380341440

50
9.1924

50
9464550456174

50
91901026736

50
965965141216

50
915900480135

50
945150146778

50
940969143325

50
9440132,2282

50
90041148592

50
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27133
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264977
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27133
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264977
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274133
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266977
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27133
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260977
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274133
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26977

530
266977
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264812

530
264977

530
264812

530
264977

530
264812

530
264977

530
264812

530
264977

530

150 100
9415900480135

150 100
8¢6612140123

150 100
90969163325

150 100
8458801451400

150 100
90041148592

150 100
844850240110

150 100
848808243796

150 100
843538245009

150 100
847273248919

150 100
841942249824

150
9.6618

100
150 100
9¢19010426736

150 100
964550456174

150 100
9415900480135

150 100
965965141216

150 100
90969143325

150 100
9515016778

150 100
9¢0041148592

150 100
944013242282

150 100

«075 20

264977 O
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27133 0
«075 20

264977 O
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26977 O
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27133 O
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«075 20
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«07% 20
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«075 20

264977 O
«075 20
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«075 20
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«075 20

264977 O
«075 20

264812 O
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944013242282
31 47 46

867273248919
31 54 55

942559267710
31 48 47

8e638036144C
31 56 57

104136
31 50 49

946455056174
31 57 58

10,132 0429475
31 51 50

945965141216
31 58 59

104097 0488345
31 52 51

95150146778
31 59 60

10,029 144690
31 53 52

9.40132.,2282
31 60 61

909266240497
31 54 53

962559247710
31 61 62

947907246234
31 55 54

960791343045
31 62 63

96215341882
31 57 56

10132 0629475
31 64 65

1046
31 58 57

104097 0488345
31 65 66

264812
54

94255927710

50
264977 848808243796
47
50
264812 9,07913,3045
55
50
260977 Be7273248919
49
50
264637104132 0429475
57
50
26812 946618
50
50
264637104097 0488345
58
50
264812 964550456174
51
50
26637104029 144690
59
50
26812 945965141216
52
50
266637 949266240497
60
50
264812 9515016778
53
50
266637 97907246234
61
50
260812 964013242282
54
50
264637 9.62153,1882
62
50
264812 9425592.7710
55
50
260637 95247344667
64
50
2663710136
57
50
264456104582 0461628
65
50
264637106132 0629475

58
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264812 848808243796
530 150 100
264977 942559247710
530 150 100
26812 847273248919
520 150 100
26977 94079133045
530 150 100
266637 946618
530 150 100
26812106132 0629475
530 150 100
260637 946455056174
530 150 100
26812104097 0488345
530 150 100
264637 945965141216
530 150 100
26812104029 144690
530 150 100
26637 945150146778
530 150 100
264812 949266240497
530 150 100
260637 944013242282
530 150 100
26812 97907246234
530 150 100
26¢637 94255927710
530 150 100
26812 946215341882
530 150 100
26637 90791343045
530 150 100
264637106
530 150 100

266456106132 029475

530 150 100
264637106582 0661628

26977 O
«075 20

264812 O
«075 20

26977 O
«075 20

26812 O
«075 20

26812 O
«075 20

264637 0
«075 20

26812 O
«075 20

264637 O
«075 20

264812 O
«075 20

26637 O
¢« 075 20

26812 O
«075 20

264637 O
«075 20

26812 O
«075 20

264637 O
«075 20

264812 O
«075 20

264637 O
«075 20

26812 O
«075 20

26456 O
«075 20

264637 O
«07% 20

264456 0
«075 20
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2
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2
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2
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1108
2
3108
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10,582 0.61628
31 59 58

10,029 144690
31 66 67

10,528 142306
31 60 59

99266240497
31 67 68

104439 18407
31 61 60

967907246234
31 68 69

104314 244446
31 62 61

9.6215 3.1882
31 69 70

104155 34,0401
1

AR A9
Lol [ 4

95247 344667

50
26045610528 142306
66
50
26663710097 0e88345
59
50
2644561064439 148407
67
50
260637106029 144690
60
50
260456106314 244446
68
50
266637 99266240497
61
50
264456106155 3,0401
69
50
266637 97907 246234
62
50

264456 949607 346254

70
50
26637 946215 3,1882
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530 150 100
26456106097 0e88345

530 150 100
26¢637104528 12306

530 150 100
26456106029 144690

530 150 100
26637106439 148407

530 150 100
260456 99266240497

530 150 100
26463710314 244446

530 150 100
266456 947907246234

530 150 100
26637106155 340401

530 150 100
260456 946215 341882

530 150 100
260637 949607 346254

264637 0
«075 20

264456 0O
«075 20

264637 O
«078 20
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26456 O
«075 20

26637 O
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«075 20
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o075 Z0
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204
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214
221
224
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234
241
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251
252
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0
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15
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41
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54
61
62
64
66
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141

143
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0e342
10
~0e342
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Appendix E. Input Data for Shallow Spherical Shell Dynamic Characteristics Problem

A, Pseudo Instructions
C SHALLOW SHELL PROBLEM, LOW FREQUENCY FLEXURAL MODES OF FREE SHELL.

<
C FORMATION OF THE STRUCTURE MASS AND STIFFNESS MATRICESe
C
1.0 09001 KEROO1} BILD 5402
165 10001 MERO0O1 CONT
2.0 10001 MEROO1 ADDS 11001 MAROO1 5400
3.0 9001 KEROO1 ADDS 11002 KARO001 5400
C
C IMPOSITION OF SYMMETRY AND BOUNDARY CONDITIONS.
C
460 9001 VTROO1 READ
Se0 9001 VTROO1 CcoLs 9002 VTCO001
640 9002 VTCO001 FLIP 9003 VFROO1

760 11002 KARO0O1 9002 VvTC001 MULT 10001 KvCo001
8.0 09003 VFROO1 10001 KvCO001 MULT 10002 KTC001
9.0 10002 KTC001 ROWS 11003 KTROO1
1060 11091 MAROO1 9002 vTC001 MULT 10001 MvCO001
1140 9003 VFROO1 10001 MVCO001 MULT 10002 MTC001

C

C DECOMPOSITION OF THE MASS MATRIX,

C
12:0 10002 MTCOO0} RONS 11004 HMTROGI
13¢0 11004 MTROO1 9002 MRROO1  CHIN 11005 MIR0O1
1440 9002 MRROO1 FLIP 10001 MFCOO1

¢

C FORMATION OF THE DYNAMIC MATRIX.,

c

1560 11003 KTRO001 10001 MFCOO1 CHOL 10002 KBCOO1
160 9002 MRROO1 10002 KBCOO01 MULT 11006 DYCO0O01

170 11006 DYCO001 DECO 10001 DYDOO1

g DETERMINATION OF EIGENVALUES AND EIGENVECTORS,

‘ 1840 10001 DYDO0O1 10002 E£EvDOO1 ROOTY 10003 EIDOO1 -100
19.0 10002 EvVDOO1 CODE 9002 EVCO01

g INVERSE TRANSFORMATION OF THE EIGENVECTORS,

20,0 11005 MIROO01 9002 EVCO001 MULT 11007 ETCOO1
2140 11007 ETCO01 cOoLsS 10004 ETCOO1
2240 9001 VTROO1 10004 ETCO01 MULT 11007 ETCOO01

C
C PRINTOUT OF RESULTSe
C

2340 10003 E1D0001 INKS 1

2400 11007 ETCO001 INKS 1

2540 HALT

B. Material Table
201476 53000 12¢5E~-6 160E+S 840E+6 16e0E+6 4¢0E+6
8.0E+6 B,0E+6 16 0E+6 4 e0E+6 4eQE+6
0000000000000
147
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0.0
0.0
0.0
1.339
14273
10273
3.233

1.800
10
0.0

14014
11
1.339

24889
12
2475

40326
3,233

5100
14
3,500

0.0
16
1.014

20640
17
2889
13
44879
18
4,326

64375
19
5100
15
64900
21
0.0
17
1.697
22

C.

Element Data

1.800
le273
34500
1273
30233
24475
0.0

1339
5200
3¢233
54100
2475
4 326
1339
24889
0.0

le014
5100
60900
44326
6375
24889
44879
1.014
20640
0.0

84700

66375

0.0

1273
000

14273
1¢239
24475
1800
34233
0.0

14339
1,014
24475
2.889
34233
44326
3,500
5,100
14014
0.0

24889
24640
44326
44879
56100
6375
5200
0.0

2640
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2B e b4
28444
28428
28eb4
28428
28028
28 e44
28428
28402
28428
28,02
28428
28402
28428
28402
28.28
28,02
28402
27465
28402
27465
28402
27465
28.02
27465
28002
2714

2765

le96E-5
1¢273 16273
1e96E~-5
0.0 1800
1¢96E-~5
30233 14339
1e96E-5
1800 000
1e96E-5
26475 24475
1¢96E~5
1339 34233
1¢96E~-5
1¢273 10273
1096E‘5
0«0 34500
1.965'5
5100 14014
10965‘5
34500 060
1496E-5
44326 2.889
1e96E-5
3233 14339
1¢96E~-5
20889 44326
1496E~S
20475 24475
1e96E-5
1,014 5,100
1e96E~5
1339 3,233
1¢96E-5
060 5200
1e96E~5
56200 000
1e96E-5
6375 24640
1e96E~-5
50100 16014
1¢96E~5
44879 44879
1¢96E-%
40326 24889
1¢96E~-5
2¢640 64375
le96E-5
20889 44326
10965'5
Ce0 6900
le96E~5
le016 50100
1e96E-5
8¢533 14697
l1e96E~-5
66900 060
1e¢96E~-5

0075 20
28444 O
0075 20
28444 O
0075 20
28,28 O
0075 20
28444 O
0075 20
28428 O
0,075 20
28,28 O
007% 20
2844 O
0«075 20
28428 O
0075 20
28402 O
0,07% 20
28028 O
04075 20
28,02 O
0,075 20
28,28 O
0075 20
28602 0
0075 20
28428 O
0075 20
28,02 O
04075 20
28428 O
0075 20
2802 O
04075 20
28,02 O
0078 20
27465 O
0.07% 20
28402 O
0075 20
27465 O
0.07% 20
28,02 O
0075 20
27465 O
04075 20
286,02 O
0075 20
27465 O
04075 20
28,02 O
04075 20
27¢14 O
0075 20
2765 0
0075 20




O O D OO O 0 DD D O D O O O D D 0 \O e Ot O N e O e O O O

31
31
31
31
31
3
31
31
31
31
31
31
31
31
31
31
31
31
31
31
31
31
31
31
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37
80700

2Tel4
21
26046
22
26046
32
2Te 16

B8e¢533 14697
80038 34329
4e879 4879
Te234 44833
60152 60152
20640 64375
40833 74234
3329 84038
00 60900
16697 84533
1060 0e0
8533 14697
80038 34329
10440 20068
9¢793 44056
70234 4,833
66152 60152
8e81l4 54889
Te495 74495
40833 74234
36329 8,038
50889 8,814
40056 94793
16697 84533
00 84700
20068 10440
149

2714
2T7e14
27465
27e14
2714
2765
2T7e14
2Te14
27065
2714
26446
2714
2714
26446
2646
2714
27e14
26046
26446
27+14
2714
26046
26046
2714
2714

26446

1040

86038 34329
1le96E-5
Te234 44833
1496E-5
6375 24640
10965“5
6e152 64152
1¢96E~5
Te234
1le96E-5
4¢879 44879
1e96E-5
3329 80038
1096E-5
10697 84533
1¢96E-5
2¢640 60375
1496E~5
84700
1+96E-5
2068
1e96E~5
84700 0460
1e96E~5
14697

1.QLF &
-

- s -

9e¢793 46056
1¢9686E-5
54889
1496E-5
864038 3.329
1¢96E~-5
Te2384 44833
1+96E~5
Te¢495
1¢96E-5
5889 B8.814
1e¢96E-5
6e¢152 60152
1¢96E~5
44833 Te234
1496E-5
40056 94793
1096E‘5
20068 10640
le96E-5
3¢329 8.038
1¢96E~-5
16697 84533
1e96E~5
10460

40833

0.0

86533

84814

T o495

0.0

27¢14 O
0075 20
2Tela4 O
04075 20
2765 0
0075 20
27614 O
06075 20
27¢14 0O
0075 20
27465 O
0¢07% 20
27414 O
0075 20
27¢14 O
0075 20
27465 O
06075 20
2T¢14 O
0075 20
26446 O
06075 20
27«14 O
0075 20
2714 O

N_NATYE 2n
veVis v

26046 O
0075 20
26046 O
0075 20
27.14 O
0075 20
27«14 O
0,075 20
26046 O
06075 20
26446 O
0075 20
2714 O
0075 20
2714 O
0075 20
26046 O
0075 20
26446 O
0075 20
27414 0
0075 20
27¢14 O
0075 20
2646 O
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D. Matrix Data and Title Cards (Symmetric Modes)

VIROO1 83 -1 0

22 22 1.0 264 24 140 26 26 1.0

31 31 10 32 32 1.0 33 22 «7738
33 42 07738 33 43 =-0,7070 33 52 06464
33 62 1527 33 63 -1e129 33 72 le274
33 73 ~=1le741 33 82 14527 33 83 ~2.728
33 92 06464 33 93 -14250 33 102 «3005
33 112 le481 33 113 =-069677 33 122 14783
33 123 =3319 33 132 16783 33 133 ~44969
33 142 le481 33 143 -44867 33 162 03005
33 153 =1006 33 162 e9575 33 172 16927
33 173 =4e298 33 182 1e927 33 183 Te945
33 192 1927 33 193 -10,.38 33 202 09575
33 203 ~5580 33 212 24026 33 222 06942
33 223 =le74)} 33 232 «8049 33 233 ~-34960
33 242 06942 33 243 ~44959 33 2%2 «8049
33 253 =T7e318 33 262 e6941 33 263 ~T4421
33 272 «8049 33 273 -9¢563 33 282 06942
33 283 84755 33 292 04026 33 293 -~5.176
33 313 -le736 33 323 ~-1.868 33 333 -~44940
33 343 ~36452 33 353 -~-T7e¢394 33 363 -44513
33 373 ~8e732 33 383 ~2¢442 34 34 140

35 35 140 36 36 1.0 42 42 1.0

43 43 160 &4 44 1.0 46 46 l1¢0

52 52 160 54 54 1.0 56 56 1.0

61 61 10 62 62 1.0 63 63 1.0

64 64 le0 65 65 1.0 66 66 1.0

71 71 1.0 72 72 1.0 73 73 1.0

T4 T4 140 75 75 le0 76 76 le0

81 81 160 82 82 1l¢0 83 83 1.0

84 84 10 85 85 1.0 86 86 1.0

92 92 le0 913 93 1.0 94 94 1.0

96 96 160 102 102 1,0 104 104 le0
106 106 10 111 111 1.0 112 112 1.0
113 113 1¢0 114 114 1.0 115 115 140
116 116 1.0 121 121 16,0 122 122 1.0
123 123 10 124 124 1.0 125 125 1.0
126 126 1,0 131 131 1.0 132 132 1.0
133 133 1.0 134 134 10 135 135 1.0
136 136 160 la} 141 1.0 142 142 140
143 143 10 144 144 140 145 145 160
146 146 10 152 152 1.0 153 153 10
154 154 10 156 156 1.0 162 162 1.0
164 164 10 166 166 1¢0 171 171 10
172 172 1.0 173 173 1.0 174 174 10
175 175 160 176 176 1.0 181 181 10
182 182 160 183 183 160 184 184 1.0
185 185 140 186 186 1e0 191 191 1.0
192 192 100 193 193 14,0 194 194 1.0
195 195 1.0 196 196 1.0 202 202 1.0
203 203 10 204 204 1.0 206 206 1.0
212 212 160 214 214 1.0 216 216 140
221 221 1.0 222 222 l.0 223 223 10
224 224 1.0 225 225 1.0 226 226 1.0
231 231 1.0 232 232 100 233 233 1.0
234 234 le¢0 235 235 10 236 236 140
241 241 1.0 262 242 le0 243 243 1.0

150
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2464
251
254
261
264
271
274
281
284
292
296
306
313
316
323
326
333
336
343
346
353
356
363
366
373
376

LN- YA
SO

244
251
254
261
264
271
274
281
284
292
296
306
313
316
323
326
333
336
343
346
353
356
363
366
373
376

20 2
20"
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160
1¢0
160
l1e¢0
1.0
1,0
140
1.0
1¢0
l1e¢0
1.0
1.0
10
140
10
1.0
1.0
1.0
1.0
1.0
140
10
l1e¢0
1.0
140
160

1N
i1ewv

245
252
255
262
265
272
275
282
285
293
302
311
314
321
324
331
334
341
344
351
354
261
364
371
374
382

ans
200

245
252
255
262
265
272
275
282
285
293
302
311
314
321
324
331
334
341
364
351
354
361
364
371
374
382

ans
200

151

le0
160

10
10
1.0
1.0
1,0
140
l1¢0
10
160
140
100
1.0
1.0
140
160
160
1.0
1e0
160
1.0
160
140
1.0

T A
1Leu

2646
253
256
263
266
273
276
283
286
294
304
312
315
322
325
332
335
342
345
352
355
362
365
372
3ars
383

246
253
256
263
266
273
276
283
286
294
304
312
315
322
325
332
335
342
345
352
355
362
365
i72
375
383

140
140
140
140
le0
1.0
1.0
140
1.0
10
1.0
140
1.0
140
1¢0
1e0
1.0
1.0
1.0
140
140
1.0
1.0
1.0
10
l.0



